精英家教网 > 高中数学 > 题目详情
用数学归纳法证明不等式:++…+>(n∈N*且n>1).
见解析
【证明】(1)当n=2时,左边=+=>,不等式成立.
(2)假设当n=k(k≥2,k∈N*)时,不等式成立,
++…+>,
则当n=k+1时,
左边=++…+++
=+++…+++->+->.
∴当n=k+1时,不等式成立,
根据(1)(2)知,原不等式对n∈N*且n>1都成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

图1,2,3,4分别包含1,5,13和25个互不重叠的单位正方形,按同样的方式构造图形,则第个图包含______个互不重叠的单位正方形。

图1      图2         图3              图4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面四个判断中,正确的是(  )
A.式子1+k+k2+…+kn(n∈N*)中,当n=1时式子值为1
B.式子1+k+k2+…+kn-1(n∈N*)中,当n=1时式子值为1+k
C.式子1++…+(n∈N*)中,当n=1时式子值为1+
D.设f(x)=(n∈N*),则f(k+1)=f(k)+

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明不等式“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N)能被9整除”,要利
用归纳法假设证nk+1时的情况,只需展开(  ).
A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,f(n)都能被m整除,则m的最大值为(  )
A.18B.36C.48D.54

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在圆内:画1条弦,把圆分成2部分;画2条相交的弦,把圆分成4部分,画3条两两相交的弦,把圆最多分成7部分;…,画条两两相交的弦,把圆最多分成            部分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明1+a+a2+ +an+1 (n∈N*,a≠1),在验证n=1时,左边所得的项为(  )
A.1B.1+a+a2 C.1+aD.1+a+a2+a3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明命题时,此命题左式为,则n=k+1与n=k时相比,左边应添加(    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案