精英家教网 > 高中数学 > 题目详情
已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,f(n)都能被m整除,则m的最大值为(  )
A.18B.36C.48D.54
B
先求出当n=1,2,3时f(n)的值,由此猜想m的最大值,再用数学归纳法证明结论成立.
由于f(1)=36,f(2)=108,f(3)=360都能被36整除,猜想f(n)能被36整除,即m的最大值为36.当n≥1时,可知猜想成立.假设当n=k(k≥1,k∈N*)时,猜想成立,即f(k)=(2k+7)·3k+9能被36整除;当n=k+1时,f(k+1)=(2k+9)
·3k+1+9=(2k+7)·3k+9+36(k+5)·3k-2,因此f(k+1)也能被36整除,故所求m的最大值为36.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即当(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*),用数学归纳法证明Si(2i+1)=-i(2i+1)(i∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明不等式:++…+>(n∈N*且n>1).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列推理中属于归纳推理且结论正确的是(  )
A.设数列﹛an﹜的前n项和为sn,由an=2n﹣1,求出s1 =12 , s2=22,s3=32,…推断sn=n2
B.由cosx,满足x∈R都成立,推断为奇函数。
C.由圆的面积推断:椭圆(a>b>0)的面积s=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2 >23,…,推断对一切正整数n,(n+1)2>2n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,n∈NAn=2n2Bn=3n,试比较AnBn的大小,
并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在应用数学归纳法证明凸n变形的对角线为条时,第一步检验n等于( )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明不等式,第二步由k到k+1时不等式左边需增加(      )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设关于正整数的函数
(1)求
(2)是否存在常数使得对一切自然数都成立?并证明你的结论

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明:1+++时,在第二步证明从n=k到n=k+1成立时,左边增加的项数是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案