精英家教网 > 高中数学 > 题目详情
设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即当(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*),用数学归纳法证明Si(2i+1)=-i(2i+1)(i∈N*).
见解析
①当i=1时,Si(2i+1)=S3=-1·(2+1)=-3,
故原式成立.
②假设当i=m时,等式成立,即Sm(2m+1)=-m·(2m+1).
则当i=m+1时,
S(m+1)[2(m+1)+1]=S(m+1)(2m+3)=Sm(2m+1)+(2m+1)2-(2m+2)2=-m(2m+1)+(2m+1)2-(2m+2)2=-(2m2+5m+3)=-(m+1)(2m+3),故原式成立.
综合①②得:Si(2i+1)=-i(2i+1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知是函数的两个零点,其中常数,设
(Ⅰ)用表示
(Ⅱ)求证:
(Ⅲ)求证:对任意的

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设x>0,y>0且x≠y,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面四个判断中,正确的是(  )
A.式子1+k+k2+…+kn(n∈N*)中,当n=1时式子值为1
B.式子1+k+k2+…+kn-1(n∈N*)中,当n=1时式子值为1+k
C.式子1++…+(n∈N*)中,当n=1时式子值为1+
D.设f(x)=(n∈N*),则f(k+1)=f(k)+

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明不等式“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,f(n)都能被m整除,则m的最大值为(  )
A.18B.36C.48D.54

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

观察式子:则可归纳出式子( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明不等式+…+>的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明1+<n,其中n>1且n∈N*,在验证n=2时,式子的左边等于________.

查看答案和解析>>

同步练习册答案