精英家教网 > 高中数学 > 题目详情
已知:函数fn(x)(n∈N*)的定义域为(-∞,0)∪(0,+∞),其中,并且当n>1且n∈N*时,满足
(1)求函数fn(x)(n∈N*)的解析式;
(2)当n=1,2,3时,分别研究函数fn(x)的单调性与值域;
(3)借助(2)的研究过程或研究结论,提出一个类似(2)的研究问题,并写出问题的研究过程与研究结论.
【第(3)小题将根据你所提出问题的质量,以及解决所提出问题的情况进行分层评分】
【答案】分析:(1)利用累加法直接求函数fn(x)(n∈N*)的解析式;
(2)当n=1当n=1,2,3时,分别利用双勾函数,平方,求出函数f1(x),f2(x),f3(x)的单调性与值域;
(3)借助(2)的研究过程或研究结论,求出第一类,结论一:f4(x)单调性与值域;结论二:f5(x)的单调性与值域;第二类问题,结论三、当x>0时,函数fn(x)的单调性与值域;结论四、当x<0且n为奇数时,结论五、当x<0且n为偶数时,函数fn(x)的单调性与值域;通过数列求和,利用函数的单调性的定义证明即可…
解答:解:(1)由于;                           (2分)
所以;                  (4分)
(2)(每小题结论正确(1分),证明(1分),共6分)
当n=1时,,易证函数的单调递增区间为(-∞,-1),(1,+∞);
单调递减区间为(-1,0),(0,1);值域为(-∞,-1]∪[3,+∞)
当n=2时,,易证函数的单调递增区间为(-1,0),(1,+∞;单位递减区间为(-∞,-1),(0,1);因此函数在(-∞,0)值域为[f2(-1),+∞),在(0,+∞)上值域为[5,+∞)
因此函数值域为[1,+∞)
当n=3时,+=f2(x)+
易证f2(x)、,在(0,1)单调递减,在(1,+∞)单调递增,
所以+在(0,1)单调递减,在(1,+∞)单调递增.
由于=,用定义易证在(-∞,-1)单调递增,在(-1,0)上单调递减.的值域为(-∞,-1]∪[7,+∞)
(3)以下给出若干解答供参考,评分方法参考本小题阅卷说明:
第一类问题
结论一、单调递增区间为(-1,0),(1,+∞)单调递减区间为(-∞,-1),(0,1);值域为[1,+∞);
结论二、单调递增区间为(-∞,-1),(1,+∞)
;单调递减区间为(0,1),(-1,0),值域为(-∞,-1]∪[11,+∞)
 解法及评分说明:解法与类同,结论分2分,证明正确得2分,共4分;
第二类问题
结论三、当x>0时,
在(0,1)单调递减,在(1,+∞)单调递增,值域为[2n+1,+∞)
 结论四、当x<0且n为奇数时,在(-1,0)单调递减,在(-∞,-1)单调递增;值域为(-∞,-1];
结论五、当x<0且n为偶数时,在(-∞,-1)单调递减,在(-1,0)单调递增;值域为[1,+∞);
解法及评分说明:结论三的单调性证明可以用数学归纳法完成;即;x>0时.
①当n=1时,,用定义易证函数在(0,1)单调递减;在(1,+∞)上单调递增;计算得值域为(-∞,-1]∪[3,+∞)
 ②设函数(n∈N*)在(0,1)单调递减;在(1,+∞)
上单调递增;计算得值域为[2n+1,+∞)
 则fn+1(x)=fn(x)+,对于任意0<x1<x2,fn+1(x2)-fn+1(x1) 
= 
=,易证函数fn+1(x)=fn(x)+在(0,1)
单调递减,在(1,+∞)上单调递增;值域为[2(n+1)+1,+∞).
所以由①、②可得结论成立.
结论四及结论五的证明,可以先求和,后用定义进行证明,即:
fn(x2)-fn(x1)=,容易获得结论的证明.
解法及评分说明:结论分3分,证明正确得3分,共6分;
第三类问题
结论六:当n为奇数时,在(-1,0),(0,1)
单调递减,在(-∞,-1),(1,+∞)单调递增;值域为(-∞,-1]∪[2n+1,+∞);
结论七:当n为偶数时单调递增区间为(-1,0),(1,+∞),单调递减区间为(-∞,-1),(0,1)
;值域为[1,+∞);
结论八:当n为奇数时,在(-1,0),(0,1)单调递减,在(-∞,-1),(1,+∞)单调递增;值域为(-∞,-1]∪[2n+1,+∞);
当n为偶数时单调递增区间为(-1,0),(1,+∞),单调递减区间为(-∞,-1),(0,1);值域为[1,+∞);
解法及评分说明:解法与第二类问题类同.结论分4分,求解正确得4分,共8分.
点评:本题是开放性问题,通过研究基本函数的单调性,类比到其它的情况,考查分类讨论的思想,函数的单调性的基本证明方法,转化思想的应用,数列求和的应用,难度大,综合性强,多作为压轴题目,竞赛试题出现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为fn′(x),且满足:f2′[x1+
1
λ
(x2-x1)]=
f2(x2)-f2(x1)
x2-x1
,λ,x1x2
为常数.
(Ⅰ)试求λ的值;
(Ⅱ)设函数f2n-1(x)与fn(1-x)的乘积为函数F(x),求F(x)的极大值与极小值;
(Ⅲ)若gn(x)=ex•fn(x),试证明关于x的方程
gn(1+x)
gn+1(1+x)
=
λn-1
λn+1-1
在区间(0,2)上有唯一实数根;记此实数根为x(n),求x(n)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为f'n(x),且满足:f2(ξ2)=f2(ξ1)+(ξ2-ξ1)f2[ξ1+
1
λ
(ξ2-ξ1)]
(ξ1≠ξ2),λ,ξ1,ξ2为常数.
(Ⅰ)试求λ的值;
(Ⅱ)设函数f2n-1(x)与fn(1-x)的乘积为函数F(x),求F(x)的极大值与极小值;
(Ⅲ)试讨论关于x的方程
f′n(1+x)
f′n+1(1+x)
=
λn-1
λn+1-1
在区间(0,1)上的实数根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县一模)已知:函数fn(x)(n∈N*)的定义域为(-∞,0)∪(0,+∞),其中f1(x)=x+1+
1
x
,并且当n>1且n∈N*时,满足fn(x)-fn-1(x)=xn+
1
xn

(1)求函数fn(x)(n∈N*)的解析式;
(2)当n=1,2,3时,分别研究函数fn(x)的单调性与值域;
(3)借助(2)的研究过程或研究结论,提出一个类似(2)的研究问题,并写出问题的研究过程与研究结论.
【第(3)小题将根据你所提出问题的质量,以及解决所提出问题的情况进行分层评分】

查看答案和解析>>

科目:高中数学 来源:崇明县一模 题型:解答题

已知:函数fn(x)(n∈N*)的定义域为(-∞,0)∪(0,+∞),其中f1(x)=x+1+
1
x
,并且当n>1且n∈N*时,满足fn(x)-fn-1(x)=xn+
1
xn

(1)求函数fn(x)(n∈N*)的解析式;
(2)当n=1,2,3时,分别研究函数fn(x)的单调性与值域;
(3)借助(2)的研究过程或研究结论,提出一个类似(2)的研究问题,并写出问题的研究过程与研究结论.
【第(3)小题将根据你所提出问题的质量,以及解决所提出问题的情况进行分层评分】

查看答案和解析>>

同步练习册答案