ÒÑÖª¶¨ÒåÔÚʵÊý¼¯Éϵĺ¯Êýfn£¨x£©=xn£¬n¡ÊN*£¬Æäµ¼º¯Êý¼ÇΪf'n£¨x£©£¬ÇÒÂú×㣺f2(¦Î2)=f2(¦Î1)+(¦Î2-¦Î1)f¡ä2[¦Î1+
1
¦Ë
(¦Î2-¦Î1)]
£¨¦Î1¡Ù¦Î2£©£¬¦Ë£¬¦Î1£¬¦Î2Ϊ³£Êý£®
£¨¢ñ£©ÊÔÇó¦ËµÄÖµ£»
£¨¢ò£©É躯Êýf2n-1£¨x£©Óëfn£¨1-x£©µÄ³Ë»ýΪº¯ÊýF£¨x£©£¬ÇóF£¨x£©µÄ¼«´óÖµÓ뼫Сֵ£»
£¨¢ó£©ÊÔÌÖÂÛ¹ØÓÚxµÄ·½³Ì
f¡än(1+x)
f¡än+1(1+x)
=
¦Ën-1
¦Ën+1-1
ÔÚÇø¼ä£¨0£¬1£©ÉϵÄʵÊý¸ùµÄ¸öÊý£®
·ÖÎö£º£¨¢ñ£©¸ù¾Ýf2£¨x£©=x2£¬¿ÉµÃf2¡ä£¨x£©=2x£¬ÀûÓÃf2(¦Î2)=f2(¦Î1)+(¦Î2-¦Î1)f¡ä2[¦Î1+
1
¦Ë
(¦Î2-¦Î1)]
£¬¿ÉµÃ
¦Î22=¦Î12+2(¦Î2-¦Î1)[¦Î1+
1
¦Ë
(¦Î2-¦Î1)]
£¬»¯¼ò¿ÉÇó¦ËµÄÖµ£»
£¨¢ò£©ÏÈÇóµÃy=F£¨x£©=f2n-1£¨x£©•fn£¨1-x£©=£¨1-x£©n•x2n-1£¬ÔÙÇ󵼺¯Êýy'=-n£¨1-x£©n-1•x2n-1+£¨2n-1£©x2n-2•£¨1-x£©n=x2n-2•£¨1-x£©n-1[£¨2n-1£©-£¨3n-1£©x]£¬Áîy'=0£¬´Ó¶ø¿ÉµÃ¼«Öµµã£¬Óɴ˽øÐзÖÀàÌÖÂÛ£¬½ø¶øÈ·¶¨º¯ÊýµÄ¼«Öµ£®
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬
f¡än(1+x)
f¡än+1(1+x)
=
2n-1
2n+1-1
£¬¼´
n(1+x)n-1
(n+1)(1+x)n
=
2n-1
2n+1-1
(x¡Ù-1)
£¬´Ó¶ø·½³ÌΪ
n
(n+1)
1
1+x
=
2n-1
2n+1-1
(x¡Ù-1)
£¬½ø¶ø¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º£¨¢ñ£©f2£¨x£©=x2£¬Ôòf2¡ä£¨x£©=2x£¬
¡à¦Î22=¦Î12+2(¦Î2-¦Î1)[¦Î1+
1
¦Ë
(¦Î2-¦Î1)]
£¬ÓÖ¦Î1¡Ù¦Î2£¬
¡à¦Î2+¦Î1=2¦Î1+
2
¦Ë
(¦Î2-¦Î1)⇒¦Ë=2
£®¡­£¨4·Ö£©
£¨¢ò£©Áîy=F£¨x£©=f2n-1£¨x£©•fn£¨1-x£©=£¨1-x£©n•x2n-1£¬
Ôòy'=-n£¨1-x£©n-1•x2n-1+£¨2n-1£©x2n-2•£¨1-x£©n=x2n-2•£¨1-x£©n-1[£¨2n-1£©-£¨3n-1£©x]£¬¡­£¨3·Ö£©
Áîy'=0£¬µÃx1=0£¬x 2=
2n-1
3n-1
£¬x3=1
£¬ÇÒx1£¼x2£¼x3£¬
µ±nΪÕýżÊýʱ£¬ËæxµÄ±ä»¯£¬y'ÓëyµÄ±ä»¯ÈçÏ£º
x £¨-¡Þ£¬0£© 0 (0£¬
2n-1
3n-1
)
2n-1
3n-1
(
2n-1
3n-1
£¬1)
1 £¨1£¬+¡Þ£©
y' + 0 + 0 - 0 +
y ¼«´óÖµ ¼«Ð¡Öµ
ËùÒÔµ±x=
2n-1
3n-1
ʱ£¬y¼«´ó=
(2n-1)2n-1nn
(3n-1)3n-1
£»µ±x=1ʱ£¬y¼«Ð¡=0£®¡­£¨7·Ö£©
µ±nΪÕýÆæÊýʱ£¬ËæxµÄ±ä»¯£¬y'ÓëyµÄ±ä»¯ÈçÏ£º
x £¨-¡Þ£¬0£© 0 (0£¬
2n-1
3n-1
)
2n-1
3n-1
(
2n-1
3n-1
£¬1)
1 £¨1£¬+¡Þ£©
y' + 0 + 0 - 0 +
y ¼«´óÖµ
ËùÒÔµ±x=
2n-1
3n-1
ʱ£¬y¼«´ó=
(2n-1)2n-1nn
(3n-1)3n-1
£»ÎÞ¼«Ð¡Öµ£®¡­£¨10·Ö£©
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬
f¡än(1+x)
f¡än+1(1+x)
=
2n-1
2n+1-1
£¬¼´
n(1+x)n-1
(n+1)(1+x)n
=
2n-1
2n+1-1
(x¡Ù-1)
£¬
ËùÒÔ·½³ÌΪ
n
(n+1)
1
1+x
=
2n-1
2n+1-1
(x¡Ù-1)
£¬¡­£¨12·Ö£©¡àx=
n(2n+1-1)-(n+1)(2n-1)
(n+1)(2n-1)
=
1+(n-1)2n
(n+1)(2n-1)
£¾0
£¬¡­£¨13·Ö£©
ÓÖx-1=
n+2-2n+1
(n+1)(2n-1)
£¬¶ø¶ÔÓÚn¡ÊN*£¬ÓÐ2n+1£¾n+2£¨ÀûÓöþÏîʽ¶¨Àí¿ÉÖ¤£©£¬¡àx£¼1£®¡­£¨14·Ö£©
×ÛÉÏ£¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊýn£¬·½³ÌÖ»ÓÐΨһʵ¸ù£¬ÇÒ×ÜÔÚÇø¼ä£¨0£¬1£©ÄÚ£¬ËùÒÔÔ­·½³ÌÔÚÇø¼ä£¨0£¬1£©ÉÏÓÐΨһʵ¸ù£®¡­£¨15·Ö£©
µãÆÀ£º±¾ÌâÒÔº¯ÊýΪÔØÌ壬¿¼²éµ¼ÊýµÄÔËÓ㬿¼²éº¯ÊýµÄ¼«Öµ£¬¿¼²é·½³Ì¸ùµÄÎÊÌ⣬ÓнϴóµÄÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

18¡¢ÒÑÖª¶¨ÒåÔÚʵÊý¼¯Éϵĺ¯Êýy=f£¨x£©Âú×ãÌõ¼þ£º¶ÔÓÚÈÎÒâµÄʵÊýx£¬y£¬f£¨x+y£©=f£¨x£©+f£¨y£©£¬ÇÒx£¾0ʱ£¬f£¨x£©£¾0£¬f£¨1£©=2£¬
£¨1£©Çóf£¨0£©£»f£¨2£©£»
£¨2£©Ö¤Ã÷£ºf£¨x£©ÊÇÆ溯Êý£»
£¨3£©Ö¤Ã÷£ºf£¨x£©ÊÇÔöº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚʵÊý¼¯Éϵĺ¯Êýy=f£¨x£©Âú×ãÌõ¼þ£º¶ÔÈÎÒâµÄx£¬y¡ÊR£¬f£¨x+y£©=f£¨x£©+f£¨y£©£®
£¨1£©Çóf£¨0£©µÄÖµ£¬
£¨2£©ÇóÖ¤£ºf£¨x£©ÊÇÆ溯Êý£¬
£¨3£©¾Ù³öÒ»¸ö·ûºÏÌõ¼þµÄº¯Êýy=f£¨x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚʵÊý¼¯Éϵĺ¯Êýfn(x)=xn£¬£¨x¡ÊN*£©£¬Æäµ¼º¯Êý¼ÇΪfn¡ä£¨x£©£¬ÇÒÂú×ãfn¡ä[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
£¬ÆäÖÐa£¬x1£¬x2Ϊ³£Êý£¬x1¡Ùx2£®É躯Êýg£¨x£©=f1£¨x£©+mf2£¨x£©-lnf3£¨x£©£¬£¨m¡ÊRÇÒm¡Ù0£©£®
£¨¢ñ£©ÇóʵÊýaµÄÖµ£»
£¨¢ò£©Èôº¯Êýg£¨x£©ÎÞ¼«Öµµã£¬Æäµ¼º¯Êýg¡ä£¨x£©ÓÐÁãµã£¬ÇómµÄÖµ£»
£¨¢ó£©Çóº¯Êýg£¨x£©ÔÚx¡Ê[0£¬a]µÄͼÏóÉÏÈÎÒ»µã´¦µÄÇÐÏßбÂÊkµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚʵÊý¼¯Éϵĺ¯Êýf£¨x£©Âú×ãxf£¨x£©ÎªÅ¼º¯Êý£¬f£¨x+2£©=-f£¨x£©£¬£¨x¡ÊR£© ÇÒµ±1¡Üx¡Ü3ʱ£¬f£¨x£©=£¨2-x£©3£®
£¨1£©Çó-1¡Üx¡Ü0ʱ£¬º¯Êýf£¨x£©µÄ½âÎöʽ£®
£¨2£©Çóf£¨2008£©¡¢f£¨2008.5£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚʵÊý¼¯ÉϵÄżº¯Êýy=f£¨x£©ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÄÇôy1=f(
¦Ð
3
)
£¬y2=f(3x2+1)ºÍy3=f(log2
1
4
)
Ö®¼äµÄ´óС¹ØϵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸