精英家教网 > 高中数学 > 题目详情

为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000 株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:

 
高茎
矮茎
合计
圆粒
11
19
30
皱粒
13
7
20
合计
24
26
50
 (1) 现采用分层抽样的方法,从该样本所含的圆粒玉米中取出6株玉米,再从这6株玉米中随机选出2株,求这2株之中既有高茎玉米又有矮茎玉米的概率;
(2) 根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,其中)

(1);(2) 能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关.

解析试题分析:本题属于统计概率部分综合题,对考生的统计学的知识考查比较全面,是一道的统计学知识应用的基础试题.(1)采用列举法进行求解,随机事件的概率;(2)根据已知的公式,经过仔细的计算出的值,然后借助表格进行数据对比,得到相关性的结论.
试题解析:(1) 依题意,取出的6株圆粒玉米中含高茎2株,记为,矮茎4株,记为,从中随机选取2株的情况有如下15种:.
其中满足题意的共有8种,则所求概率为.
(6分)
(2) 根据已知列联表:

 
高茎
矮茎
合计
圆粒
11
19
30
皱粒
13
7
20
合计
24
26
50
所以.又,,
因此能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关. (12分)
考点:(1)随机变量的概率;(2)统计案例中独立性检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:

年份(x)
1
2
3
4
5
人数(y)
3
5
8
11
13
(1)从这5年中随机抽取两年,求考入大学的人数至少有年多于10人的概率.
(2)根据这年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值。
参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某次测验中,有6位同学的平均成绩为76分,用表示编号为n(n=1,2,3, 、6)的同学所得成绩,且前5位同学的成绩如下:

(1)求第6位同学的成绩及这6位同学成绩的标准差s;
(2)从6位同学中随机地选2位同学,求恰有1位同学成绩在区间(70,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1~50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:

编号
性别
投篮成绩
2

90
7

60
12

75
17

80
22

83
27

85
32

75
37

80
42

70
47

60
甲抽取的样本数据
编号
性别
投篮成绩
1

95
8

85
10

85
20

70
23

70
28

80
33

60
35

65
43

70
48

60
乙抽取的样本数据
(Ⅰ)观察抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
 
优秀
非优秀
合计

 
 
 

 
 
 
合计
 
 
10
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:

0.15
0.10
0.05
0.010
0.005
0.001

2.072
2.706
3.841
6.635
7.879
10.828
(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
    合计
 
 
110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市芙蓉社区为了解家庭月均用水量(单位:吨),从社区中随机抽查100户,获得每户2013年3月的用水量,并制作了频率分布表和频率分布直方图(如图).

(Ⅰ)分别求出频率分布表中a、b的值,并估计社区内家庭月用水量不超过3吨的频率;
(Ⅱ)设是月用水量为[0,2)的家庭代表.是月用水量为[2,4]的家庭代表.若从这五位代表中任选两人参加水价听证会,请列举出所有不同的选法,并求家庭代表至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012, PM2.5日均值在35微克/立方米以下空气质量为一级;在35~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取12天的数据作为样本,监测值频数如茎叶图所示(十位为茎,个位为叶):

(I)求空气质量为超标的数据的平均数与方差;
(II)从空气质量为二级的数据中任取2个,求这2个数据的和小于100的概率;
(III)以这12天的PM2.5日均值来估计2012年的空气质量情况,估计2012年(366天)大约有多少天的空气质量达到一级或二级.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7名身高互不相等的学生,分别按下列要求排列,各有多少种不同的排法?
(1)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减;
(2)任取6名学生,排成二排三列,使每一列的前排学生比后排学生矮.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在对人们的休闲方式的一次调查中,共调查了人,其中女性人,男性人.女性中有人主要的休闲方式是看电视,另外人主要的休闲方式是运动;男性中有人主要的休闲方式是看电视,另外人主要的休闲方式是运动.
(1)根据以上数据建立一个的列联表;
(2)判断性别与休闲方式是否有关系.

查看答案和解析>>

同步练习册答案