精英家教网 > 高中数学 > 题目详情
在120°的二面角内,放一个半径为5cm的球切两半平面于A、B两点,那么这两个切点在球面上的最短距离是                       。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面两两互相垂直,点,点的距离都是,点上的动点,满足的距离是到到点距离的倍,则点的轨迹上的点到的距离的最小值是
A.  B.   
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱中,是侧棱的中点.

(Ⅰ)证明:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点。
(Ⅰ)证明:面
(Ⅱ)求所成角的余弦值;
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角梯形ABCD中, A为PD的中点,如下图,
将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,

(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值;
(3)在线段BC上是否存在点F,使SF//平面EAC?若存在,确定F点的位置,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图1,在平面内,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).
  
(Ⅰ) 设二面角E – AC – D1的大小为q,若£q£,求线段BE长的取值范围;
(Ⅱ)在线段上存在点,使平面平面,求与BE之间满足的关系式,并证明:当0 < BE < a时,恒有< 1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

二面角αlβ等于120°,AB是棱l上两点,ACBD分别在半平面αβ内,AClBDl,且AB=AC=BD=1,则CD的长等于                                             (  )

A.                           B.
C.2                             D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为1的正方体中,分别是的中点,在棱上,且,H的中点,应用空间向量方法求解下列问题.

(1)求证:;
(2)求EF与所成的角的余弦;
(3)求FH的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长均为2的正四棱锥中,点E为PC的中点,则下列命题正确的是(  )(正四棱锥即底面为正方形,四条侧棱长相等,顶点在底面上的射影为底面的中心的四棱锥)
A.,且直线BE到面PAD的距离为
B.,且直线BE到面PAD的距离为
C.,且直线BE与面PAD所成的角大于
D.,且直线BE与面PAD所成的角小于

查看答案和解析>>

同步练习册答案