精英家教网 > 高中数学 > 题目详情
在棱长为1的正方体中,分别是的中点,在棱上,且,H的中点,应用空间向量方法求解下列问题.

(1)求证:;
(2)求EF与所成的角的余弦;
(3)求FH的长.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,PA垂直于矩形ABCD所在的平面,PD=PAEF分别是ABPD的中点。

(1)求证:AF∥平面PCE
(2)求证:平面PCE⊥平面PCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为的正方体中,
是线段的中点,.
(Ⅰ) 求证:^
(Ⅱ) 求证:∥平面
(Ⅲ) 求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥P-ABC中,PA=PC,∠APC=∠ACB=90°,∠BAC=30°,平面PAC⊥平面ABC.

(1)求证:平面PAB⊥平面PBC;
(2)若PA=2,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四面体中,共顶点的三条棱两两互相垂直,且若四面体的四个顶点在一个球面上,则B,D的球面距离为_ ___   __。               

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在120°的二面角内,放一个半径为5cm的球切两半平面于A、B两点,那么这两个切点在球面上的最短距离是                       。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,平面FBC⊥面ABCD,△FBC中BC边上的高FH=2,,则该多面体的体积为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
如图,在直三棱柱

(1)证明:
(2)求二面角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,多面体ABCD—EFG中,底面ABCD为正方形,GD//FC//AE,AE⊥平面ABCD,其正视图、俯视图如下:
(I)求证:平面AEF⊥平面BDG;

(II)若存在使得,二面角A—BG—K的大小为,求的值。

查看答案和解析>>

同步练习册答案