精英家教网 > 高中数学 > 题目详情
如图,多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,平面FBC⊥面ABCD,△FBC中BC边上的高FH=2,,则该多面体的体积为(  )
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知平面截一球面得圆,过圆心且与二面角的平面截该球面得圆,若该球面的半径为4,圆的面积为,则圆的面积为
(A)          (B)           (c)            (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点A,B,C是半径为2的球面上三点,且AB=2,则球心到平面ABC的距离最大值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点。
(Ⅰ)证明:面
(Ⅱ)求所成角的余弦值;
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个平面截一个球得到截面面积为的圆面,球心到这个平面的距离是,则该球的表面积是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知矩形与正三角形所在的平面互相垂直, 分别为棱的中点,,

(1)证明:直线平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD是正方形,DM⊥PC,垂足为M.

(1)求证:BD⊥平面PAC.
(2)求证:平面MBD⊥平面PCD.     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为1的正方体中,分别是的中点,在棱上,且,H的中点,应用空间向量方法求解下列问题.

(1)求证:;
(2)求EF与所成的角的余弦;
(3)求FH的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱椎P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是300,点F是PB的中点,点E在边BC上移动

(1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)证明:无论点E在边BC的何处,都有AF⊥PE;
(3)求当BE的长为多少时,二面角P-DE-A的大小为450。

查看答案和解析>>

同步练习册答案