精英家教网 > 高中数学 > 题目详情
(12分)
如图,在直三棱柱

(1)证明:
(2)求二面角的大小
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面两两互相垂直,点,点的距离都是,点上的动点,满足的距离是到到点距离的倍,则点的轨迹上的点到的距离的最小值是
A.  B.   
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知矩形与正三角形所在的平面互相垂直, 分别为棱的中点,,

(1)证明:直线平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

20.(本小题满分8分)如图,AB是⊙O的直径,PA⊥⊙O所在的平面,C是圆上一点,∠ABC = 30°,PA = AB.      
(1)求证:平面PAC⊥平面PBC
(2)求直线PC与平面ABC所成角的正切值;
(3)求二面角APBC的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图1,在平面内,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).
  
(Ⅰ) 设二面角E – AC – D1的大小为q,若£q£,求线段BE长的取值范围;
(Ⅱ)在线段上存在点,使平面平面,求与BE之间满足的关系式,并证明:当0 < BE < a时,恒有< 1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)如图,在四棱锥中,
底面是矩形,侧棱PD⊥底面
的中点,作于点.
(1)证明:∥平面
(2)证明:⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为1的正方体中,分别是的中点,在棱上,且,H的中点,应用空间向量方法求解下列问题.

(1)求证:;
(2)求EF与所成的角的余弦;
(3)求FH的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长均为2的正四棱锥中,点E为PC的中点,则下列命题正确的是(  )(正四棱锥即底面为正方形,四条侧棱长相等,顶点在底面上的射影为底面的中心的四棱锥)
A.,且直线BE到面PAD的距离为
B.,且直线BE到面PAD的距离为
C.,且直线BE与面PAD所成的角大于
D.,且直线BE与面PAD所成的角小于

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

⊿ABC中,AB=AC=5,BC=6,PA平面ABC,则点P到BC的距离是(  )
A. 4B.3C.2D.

查看答案和解析>>

同步练习册答案