精英家教网 > 高中数学 > 题目详情
已知函数f(x)=,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).
见解析

试题分析:本题是一个比较复杂的函数求零点的问题,通过转化为两个较熟悉的函数研究.容易得到两个数有三个交点,所以有三个零点.零点的范围不好确定,本题很巧妙地应用了零点定理,求出了个的范围.这种方法值得好好体会.
试题解析:由f(x)=0,得,令.分别画出它们的图象如图,其中抛物线的顶点坐标为(0,2),与x轴的交点为(-2,0)、(2,0),的图象有3个交点,从而函数f(x)有3个零点.由f(x)的解析式知x≠0,f(x)的图象在(-∞,0)和(0,+∞)上分别是连续不断地曲线,且.所以三个零点分别在区间(-3,-2),,(1,2)内.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元,为整数.
(1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)的函数关系式(并写出这个函数的定义域);
(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线.
(Ⅰ)求,,,的值;
(Ⅱ)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知实数 方程有且仅有两个不等实根,且较大的实根大于3,则实数的取值范围____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知关于的方程有一解,则的取值范围为(   ) 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的零点所在的区间为( )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的零点所在区间是(      )
A.(B.(C.(,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域为D,若存在闭区间[a,b]D,使得函数满足:(1)在[a,b]内是单调函数;(2)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=的“美丽区间”.下列函数中存在“美丽区间”的是          . (只需填符合题意的函数序号) 
①、;        ②、
③、;        ④、.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列{}定义如下:=1,当时,,若,则的值等于(     )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案