精英家教网 > 高中数学 > 题目详情
p(x,y)是满足
2x+y≤4
x≥0
y≥0
的区域上的动点.那么z=x+y的最大值是
 
分析:①画可行域②z为目标函数纵截距③画直线0=x+y,平移该直线过点p时得z最大值.
解答:解:做可行域如图,画直线l:0=x+y (蓝线),平移l,直线y=-x+z经过点P(0,4)时,z=x+y最得最大值,最大值是4.
精英家教网
点评:考查线性规划问题可行域画法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点P(x,y)是圆x2+(y-1)2=1上任意一点,若点P的坐标满足不等式x+y+m≥0,则实数m的取值范围是(  )
A、(-∞, -
2
]
B、[
2
-1, +∞)
C、(
2
, +∞)
D、[1-
2
, +∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC三个顶点坐标为A(2,4),B(-1,-2),c(4,-4).
(Ⅰ)求△ABC内任一点(x,y)所满足的条件;
(Ⅱ)求z=x-y最小值,其中p(x,y)是△ABC内的整点.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(x,y)是圆x2+(y-1)2=1上任意一点,若点P的坐标满足不等式x+y+m≥0,则实数m的取值范围
[
2
-1
,+∞)
[
2
-1
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知两点A(-1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到
2
倍后得到点Q(x,
2y
)满足
AQ
BQ
=1

(1)求动点P所在曲线C的轨迹方程;
(2)过点B作斜率为-
2
2
的直线i交曲线C于M、N两点,且满足
OM
+
ON
+
OH
=
0
(O为坐标原点),试判断点H是否在曲线C上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①如果复数z满足|z+i|+|z-i|=2,则复数z在复平面上所对应点的轨迹是椭圆.
②设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(-x)|恒成立,则f(x)是R上的奇函数或偶函数.
③已知曲线C:
x2
9
-
y2
16
=1
和两定点E(-5,0)、F(5,0),若P(x,y)是C上的动点,则||PE|-|PF||<6.
④设定义在R上的两个函数f(x)、g(x)都有最小值,且对任意的x∈R,命题“f(x)>0或g(x)>0”正确,则f(x)的最小值为正数或g(x)的最小值为正数.
上述命题中错误的个数是(  )

查看答案和解析>>

同步练习册答案