精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的圆锥中,OP是圆锥的高,AB是底面圆的直径,点C是弧AB的中点,E是线段AC的中点,D是线段PB的中点,且PO=2,OB=1

(1)试在PB上确定一点F,使得EFCOD,并说明理由;

(2)求到面COD的距离

【答案】(1)点F是PB上靠近点P的四等分点(2)

【解析】

试题分析:(1)要满足EFCOD,只需满足EF平行于平COD内的一条直线,由此来确定F的位置(2)到面COD的距离即求三棱锥A-COD的高,可采用等体积转化的方法求解

试题解析:(1)连接,设,由题意G为ABC的重心,

,连接DG,

平面BEF,面BEF∩面COD=DG,

EFDG,

又BD=DP,

点F是PB上靠近点P的四等分点.

(2),又是弧的中点, ,

,.

因为,

点A到面COD的距离

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为方便市民休闲观光,市政府计划在半径为200,圆心角为的扇形广场内(如图所示),沿边界修建观光道路,其中分别在线段上,且两点间距离为定长

1)当时,求观光道段的长度;

2)为提高观光效果,应尽量增加观光道路总长度,试确定图中两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.过B1作l交椭圆于P、Q两点,使PB2垂直QB2,求直线l的方程__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1x+2y10l22x+ny+50l3mx+3y+10,若l1l2l1l3,则m+n的值为(

A.10B.2C.2D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线平面,直线平面,给出下列命题:

其中正确命题的序号是

A.①②③ B.②③④ C.①③ D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差

10

11

13

12

8

发芽数

23

25

30

26

16

(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z=2m+(4-m2)i,当实数m取何值时,复数z对应的点:

(1)位于虚轴上?

(2)位于一、三象限

(3)位于以原点为圆心,以4为半径的圆上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.

1求椭圆的标准方程;

2已知点,和面内一点,过点任作直线与椭圆相交于两点,设直线的斜率分别为,若,试求满足的关系式.

查看答案和解析>>

同步练习册答案