精英家教网 > 高中数学 > 题目详情

【题目】已知直线平面,直线平面,给出下列命题:

其中正确命题的序号是

A.①②③ B.②③④ C.①③ D.②④

【答案】D

【解析】

试题分析:l平面αα∥β可以得到直线l平面β,又由直线m平面β,所以有lm;即为真命题;

因为直线l平面αα⊥β可得直线l平行与平面β或在平面β内,又由直线m平面β,所以lm,可以平行,相交,异面;故为假命题;

因为直线l平面αlm可得直线m平面α,又由直线m平面β可得α⊥β;即为真命题;

由直线l平面α以及lm可得直线m平行与平面α或在平面α内,又由直线m平面βαβ可以平行也可以相交,即为假命题.

所以真命题为①③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三 年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如下表:

(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;

(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线 和圆

(Ⅰ)求直线斜率的取值范围;

(Ⅱ)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市场上有一种新型的强力洗衣粉,特点是去污速度快,已知每投放)个单位的洗衣粉液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起有效去污的作用.

1)若只投放一次4个单位的洗衣液,则有效去污时间可能达几分钟?

2)若先投放2个单位的洗衣液,6分钟后投放个单位的洗衣液,要使接下来的4分钟中能够持续有效去污,试求的最小值(精确到0.1,参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从数列中抽出一项,依原来的顺序组成的新叫数列的一个子列.

(1)写出数列的一个是等比数列的子列

(2)若是无穷等比数列,首项,公比,则数列是否存在一个子列,为无穷等差数列?若存在,写出该子列的通项公式;若不存在,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆锥中,OP是圆锥的高,AB是底面圆的直径,点C是弧AB的中点,E是线段AC的中点,D是线段PB的中点,且PO=2,OB=1

(1)试在PB上确定一点F,使得EFCOD,并说明理由;

(2)求到面COD的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程式是参数.以坐标原点为极点,轴的正半轴为极轴,且取相同的长度单位建立极坐标系,圆的极坐标方程为

1求直线的普通方程与圆的直角坐标方程;

2设圆与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.

(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;

(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:万元)

2

3

2

7

表中的数据显示,之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算关于的回归方程.

回归直线的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,0为坐标原点.

(1)当为何值时,曲线表示圆;

(2)若曲线与直线交于两点,且,求的值.

查看答案和解析>>

同步练习册答案