精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0),其焦点是椭圆mx2+4y2=1的右焦点,且椭圆的离心率为
2
2

(Ⅰ)试求抛物线C的方程;
(Ⅱ)在y轴上截距为2的直线l与抛物线C交于M,N两点,以线段MN为直径的圆过原点,求直线l的方程;
(Ⅲ)若以原点为圆心,以t(t>0)为半径的圆分别交抛物线C上半支和y轴正半轴于A,B两点,直线AB与x轴交于点Q,试用A点的横坐标x0表示点Q的坐标.
(Ⅰ)∵椭圆mx2+4y2=1的离心率为
2
2

1
m
-
1
4
1
m
=
1
2
,∴m=2
∴2x2+4y2=1的右焦点坐标为(
1
2
,0)
∵抛物线C:y2=2px(p>0),其焦点是椭圆mx2+4y2=1的右焦点,
∴抛物线C的方程为y2=2x;
(Ⅱ)由题意,设l的方程为y=kx+2,设M(x1,y1)、N(x2,y2),
直线方程代入抛物线方程可得k2x2+(4k-2)x+4=0,则x1+x2=-
4k-2
k2
,x1x2=
4
k2

∴y1y2=8-
8k-4
k

∵以线段MN为直径的圆过原点,∴
OM
ON
=0

∴x1x2+y1y2=0
4
k2
+8-
8k-4
k
=0

∴k=-1
∴l的方程为y=-x+2,即x+y-2=0;
(Ⅲ)设圆的方程为x2+y2=t,与抛物线方程联立,可得x2+2x-t=0
设A(x0
2x0
),则t=x02+2x0,B(0,x02+2x0
∴直线AB的方程为y-(x02+2x0)=
2
x0
-(x02+2x0)
x0
(x-0)
令y=0,则x=
x03+2x02
x02+2x0-2
x0

∴Q(
x03+2x02
x02+2x0-2
x0
,0)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案