精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1中点.
 
(1)求证:AB1⊥BF;
(2)求证:AE⊥BF;
(3)棱CC1上是否存在点F,使BF⊥平面AEP,若存在,确定点P的位置;若不存在,说明理由.
(1)见解析(2)见解析(3)P是CC1的中点.
(1)证明:连结A1B,CD1,∵AB1⊥A1B,AB1⊥BC,A1B∩BC=B,
∴AB1⊥平面A1BCD1,又BF平面A1BCD1,所以AB1⊥BF.
(2)证明:取AD中点M,连结FM,BM,∴AE⊥BM,
又∵FM⊥AE,BM∩FM=M,∴AE⊥平面BFM,又BF平面BFM,∴AE⊥BF.
(3)解:存在,P是CC1的中点.易证PE∥AB1,故A、B1、E、P四点共面.
由(1)(2)知AB1⊥BF,AE⊥BF,AB1∩AE=A,∴BF⊥平面AEB1,即BF⊥平面AEP.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在锥体PABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E、F分别是BC、PC的中点.证明:AD⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=AD=2,CD=3,直线PA与底面ABCD所成角为60°,点M、N分别是PA、PB的中点.求证:

(1)MN∥平面PCD;
(2)四边形MNCD是直角梯形;
(3)DN⊥平面PCB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正三棱柱ABCA1B1C1中,已知AB=A1A,D为C1C的中点,O为A1B与AB1的交点.
 
(1)求证:AB1⊥平面A1BD;
(2)若点E为AO的中点,求证:EC∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个不重合的平面, 是直线,给出下列四个命题:①若;②若;③若上有两点到的距离相等,则;④若,则其中正确命题的序号 (    )
A.②④B.①④C.②③D.①②

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

命题:“若空间两条直线a,b分别垂直平面α,则a∥b”,学生小夏这样证明:
设a,b与平面α分别相交于A,B,连接AB,
∵a⊥α,b⊥α,AB?α,①
∴a⊥AB,b⊥AB,②
∴a∥b.③
这里的证明有两个推理,即:
①⇒②和②⇒③,老师认为小夏的推理证明不正确,这两个推理中不正确的是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

a、b、c为三条不重合的直线,α、β、γ为三个不重合平面,现给出六个命题:
 a∥b;② a∥b;③ α∥β;
 α∥β;⑤ α∥a;⑥ a∥α.
其中正确的命题是________.(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

mn是两条不同的直线,αβ是两个不同的平面.下列命题正确的是(  )
A.若mnmβ,则nβB.若mnmβ,则nβ
C.若mαmβ,则αβD.若nαnβ,则αβ

查看答案和解析>>

同步练习册答案