精英家教网 > 高中数学 > 题目详情
先阅读下面的文字:“求
1+
1+
1+…
的值时,采用了如下方法:令
1+
1+
1+…
=x,则有x=
1+x
,两边同时平方,得1+x=x2,解得x=
1+
5
2
(负值已舍去)”可用类比的方法,求得1+
1
2+
1
1+
1
2+…
的值等于(  )
A、
3
-1
2
B、
3
+1
2
C、
1-
3
2
D、
-1-
3
2
考点:类比推理
专题:推理和证明
分析:利用类比的方法,设1+
1
2+
1
1+
1
2+…
=x,则1+
1
x
=x-1,解方程可得结论.
解答: 解:设1+
1
2+
1
1+
1
2+…
=x,则1+
1
2+
1
x
=x,
∴2x2-2x-1=0
∴x=
3
2

∵x>0,
∴x=
3
+1
2

故选:B
点评:本题考查类比推理,考查学生的计算能力,解题的关键是掌握类比的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z1=-1+2i,z2=1-i,z3=3-2i,它们所对应的点分别为A、B、C,若
OC
=x
OA
+y
OB
,则x+y的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1
12+2
+
1
22+4
+
1
32+6
+…+
1
n2+2n
=
3
4
-
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数的奇偶性f﹙x﹚=0,|x|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l交椭圆
x2
20
+
y2
16
=1于M、N两点,椭圆与y轴的正半轴交于B点,若△MBN的重心恰好落在椭圆的右焦点上,则直线l方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x=-4+cost
y=3+sint
(t为参数),C2
x=8cosθ
y=3sinθ
(θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=
π
2
,Q为C2上的动点,求PQ中点M到直线C3
x=3+2t
y=-2+t
(t为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
cos(2x-φ)的图象过点(
π
6
1
2
),
①求φ的值;
②将函数y=f(x)的图象上各点的横坐标缩短到原来的
1
2
,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在(0,
π
4
)上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形ABC中,角A,B,C所对的边为a,b,c且
bcosC
acosA
+
ccosB
acosA
=2.
(Ⅰ)求A;
(Ⅱ)若a=2,求三角形ABC周长l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
为单位向量,
b
=(3,4),|
a
-2
b
|=3,则
a
b
=
 

查看答案和解析>>

同步练习册答案