分析 (1)数列{an}满足前n项和Sn=n2+1,可得a1=S1,n≥2时,an=Sn-Sn-1.可得an=$\left\{\begin{array}{l}{2,n=1}\\{2n-1,n≥2}\end{array}\right.$.进而得到bn.
(2)由cn=T2n+1-Tn=bn+1+bn+2+…+b2n+1,作差cn+1-cn,即可得出{cn}的单调性.
解答 解:(1)∵数列{an}满足前n项和Sn=n2+1,
∴a1=S1=2,a1=2,
n≥2时,an=Sn-Sn-1=2n-1(n≥2).
∴an=$\left\{\begin{array}{l}{2,n=1}\\{2n-1,n≥2}\end{array}\right.$.
n=1时,b1=$\frac{1}{3}$;
n≥2时,bn=$\frac{1}{2n-1+1}$=$\frac{1}{2n}$.
∴bn=$\left\{\begin{array}{l}{\frac{1}{3},n=1}\\{\frac{1}{2n},n≥2}\end{array}\right.$.
(2)∵cn=T2n+1-Tn=bn+1+bn+2+…+b2n+1
=$\frac{1}{2(n+1)}$+$\frac{1}{2(n+2)}$+…+$\frac{1}{2(2n+1)}$,
∴cn+1-cn=$\frac{1}{4n+6}$-$\frac{1}{2n+2}$<0,
∴{cn}是递减数列.
点评 本题考查了数列的单调性、通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{2\sqrt{13}}{13}$ | C. | $\frac{5\sqrt{13}}{26}$ | D. | $\frac{7\sqrt{13}}{26}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既不充分也非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>c>b | B. | b>a>c | C. | a>b>c | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com