【题目】设定义域为[0,1]的函数f(x)同时满足以下三个条件时称f(x)为“友谊函数”:
(1)对任意的x∈[0,1],总有f(x)≥0;
(2)f(1)=1;
(3)若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立.
则下列判断正确的序号为________.
①f(x)为“友谊函数”,则f(0)=0;
②函数g(x)=x在区间[0,1]上是“友谊函数”;
③若f(x)为“友谊函数”,且0≤x1<x2≤1,则f(x1)≤f(x2).
【答案】①②③
【解析】①∵f(x)为“友谊函数”,则取x1=x2=0,得f(0)≥f(0)+f(0),即f(0)≤0,又由f(0)≥0,得f(0)=0,故①正确;
②g(x)=x在[0,1]上满足:(1)g(x)≥0;(2)g(1)=1;若x1≥0,x2≥0且x1+x2≤1,
则有g(x1+x2)-[g(x1)+g(x2)]=(x1+x2)-(x1+x2)=0,
即g(x1+x2)≥g(x1)+g(x2),满足(3).故g(x)=x满足条件(1)(2)(3),∴g(x)=x为友谊函数,故②正确;
③∵0≤x1<x2≤1,∴0<x2-x1<1,
∴f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)≥f(x1),故有f(x1)≤f(x2),故③正确.
故答案为:①②③.
科目:高中数学 来源: 题型:
【题目】在下列关于直线l、m与平面α、β的命题中,真命题是( )
A.若lβ,且α⊥β,则l⊥α
B.若l⊥β,且α∥β,则l⊥α
C.若α∩β=m,且l⊥m,则l∥α
D.若l⊥β,且α⊥β,则l∥α
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是( )
A.a、b至少有一个不为0
B.a、b至少有一个为0
C.a、b全不为0
D.a、b中只有一个为0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列四个命题:
①三个点可以确定一个平面;
②圆锥的侧面展开图可以是一个圆面;
③底面是等边三角形,三个侧面都是等腰三角形的三棱锥是正三棱锥;
④过球面上任意两不同点的大圆有且只有一个.
其中正确命题的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读以下命题:
①如果a,b是两条直线,且a∥b,那么a平行于经过b的所有平面;
②如果直线a和平面a满足a∥a,那么a与a内的任意直线平行;
③如果直线a,b和平面a满足a∥a,b∥a,那么a∥b;
④如果直线a,b和平面a满足a∥b,a∥a,ba,,那么b∥a;
⑤如果平面α⊥平面x,平面β⊥平面x,α∩β=l,那么l⊥平面x.
请将所有正确命题的编号写在横线上 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com