【题目】已知函数
.
(1)当
,求函数
的单调区间;
(2)若函数
在
上是减函数,求
的最小值;
(3)证明:当
时,
.
【答案】(1)单调递减区间是
,
,单调递增区间是
(2)
的最小值为
(3)见解析
【解析】分析:(1)代入
,根据导函数的符号判断函数
的单调区间。
(2)由单调递减区间,得到
恒成立。进而确定只需当
时,
即可,对导函数配方,利用二次函数性质求得最大值,进而得出
的最小值。
(3)函数变形,构造函数
,求导函数
。构造函数
,则
,根据导函数的单调性求其最值,即可证明不等式。
详解:函数
的定义域为
,
详解:函数
的定义域为
,
(1)函数
,
当
且
时,
;当
时,
,
所以函数
的单调递减区间是
,
,单调递增区间是
.
(2)因
在
上为减函数,故
在
上恒成立.
所以当
时,
.
又
,
故当
,即
时,
.
所以
,于是
,故
的最小值为
.
(3)问题等价于
.
令
,则
,
当
时,
取最小值
.
设
,则
,知
在
上单调递增,在
上单调递减.
∴
,
∵
,
∴
,∴
,
故当
时,
.
科目:高中数学 来源: 题型:
【题目】(选修4﹣5:不等式选讲)
已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当
时,f(x)≤g(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b. ![]()
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,
都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;
(2)若
,
都是从区间
上任取的一个数,求
成立的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在上海自贸区的利好刺激下,
公司开拓国际市场,基本形成了市场规模;自2014年1月以来的第
个月(2014年1月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量+出口量)分别为
、
和
(单位:万件),依据销售统计数据发现形成如下营销趋势:
,
(其中
,
为常数,
),已知
万件,
万件,
万件.
(1)求
,
的值,并写出
与
满足的关系式;
(2)证明:
逐月递增且控制在2万件内;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点,
,试确定λ的值,使二面角P﹣FM﹣B的余弦值为-
. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com