精英家教网 > 高中数学 > 题目详情
13.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)离心率为$\frac{{2\sqrt{3}}}{3}$,F1(-2,0)、F2(2,0)为其两个焦点,点M是双曲线上一点,且∠F1MF2=60°,则△F1MF2的面积为$\sqrt{3}$.

分析 先求出c,a,再设出|MF1|=m,|MF2|=n,利用双曲线的定义以及余弦定理列出关系式,求出mn的值,最后求解三角形的面积.

解答 解:∵双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)离心率为$\frac{{2\sqrt{3}}}{3}$,F1(-2,0)、F2(2,0)为其两个焦点,
∴c=2,a=$\sqrt{3}$,
设|MF1|=m,|MF2|=n,
∵点M是双曲线上一点,且∠F1MF2=60°,
∴|m-n|=2$\sqrt{3}$①,m2+n2-2mncos60°=16②,
由②-①2得mn=4
∴△F1MF2的面积S=$\frac{1}{2}$mnsin60°=$\sqrt{3}$,
故答案为:$\sqrt{3}$

点评 本题考查双曲线的简单性质,双曲线的定义以及余弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知定义在R上的函数f(x)=$\frac{x+n}{{x}^{2}+1}$为奇函数.
(Ⅰ)求实数n的值;
(Ⅱ)设函数g(x)=x2-2λx-2λ,若对于任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)>f(x1)成立,求实数λ的取值范围;
(Ⅲ)请指出方程|f(x)|=log${\;}_{\frac{1}{2}}$|x|有几个实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在复平面内,复数$\frac{2+i}{1-i}$(i是虚数单位)对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数fn(x)=$\frac{{n{x^2}-ax}}{{{x^2}+1}}({n∈{N^*}})$的图象在点(0,fn(0))处的切线方程为y=-x
(Ⅰ)求a的值及f1(x)的单调区间
(Ⅱ)是否存在实数k,使得射线y=kx(x≥-3)与曲线y=f1(x)有三个公共点?若存在,求出k的取值范围;若不存在,说明理由
(Ⅲ)设x1,x2,…xn,为正实数,且x1,x2,…xn=1,证明:fn(x1)+fn(x2)+…+fn(xn)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知某路口最高限速50km/h,电子监控测得连续6辆汽车的速度如图的茎叶图(单位:km/h).若从中任取2辆,则恰好有1辆汽车超速的概率为(  )
A.$\frac{4}{15}$B.$\frac{2}{5}$C.$\frac{8}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率为$\sqrt{5}$,则其渐近线方程为(  )
A.y=±2xB.y=$±\sqrt{2}x$C.y=$±\frac{1}{2}x$D.y=$±\frac{{\sqrt{2}}}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知M是x2=8y的对称轴与准线的交点,点N是其焦点,点P在该抛物线上,且满足|PM|=m|PN|,当m取得最大值时,点P恰在以M、N为焦点的双曲线上,则该双曲线的实轴长为4($\sqrt{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,a1=0,a1+a2+a3+…+an+n=an+1,n∈N*
(Ⅰ)求证:数列{an+1}是等比数列;
(Ⅱ)设数列{bn}的前n项和为Tn,b1=1,点(Tn+1,Tn)在直线$\frac{x}{n+1}-\frac{y}{n}=\frac{1}{2}$上,若不等式$\frac{b_1}{{{a_1}+1}}+\frac{b_2}{{{a_2}+1}}+…+\frac{b_n}{{{a_n}+1}}≥m-\frac{9}{{2+2{a_n}}}$对于n∈N*恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义域为R的奇函数y=f(x)的导函数y=f′(x).当x≠0时,f′(x)+$\frac{f(x)}{x}$>0.若a=$\frac{1}{2}$f($\frac{1}{2}$),b=-2f(-2),c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),则a、b、c的大小关系是(  )
A.a<b<CB.b<c<aC.c<a<bD.a<c<b

查看答案和解析>>

同步练习册答案