分析 过P作准线的垂线,垂足为B,则由抛物线的定义,结合|PM|=m|PN|,可得$\frac{1}{m}$=$\frac{|PB|}{|PM|}$,设PM的倾斜角为α,则当m取得最大值时,sinα最小,此时直线PM与抛物线相切,求出P的坐标,利用双曲线的定义,即可得出结论.
解答
解:过P作准线的垂线,垂足为B,则
由抛物线的定义可得|PN|=|PB|,
∵|PM|=m|PN|,
∴|PM|=m|PB|
∴$\frac{1}{m}$=$\frac{|PB|}{|PM|}$,
设PM的倾斜角为α,则sinα=$\frac{1}{m}$,
当m取得最大值时,sinα最小,此时直线PM与抛物线相切,
设直线PM的方程为y=kx-2,代入x2=8y,可得x2=8(kx-2),
即x2-8kx+16=0,
∴△=64k2-64=0,
∴k=±1,
∴P(4,2),
∴双曲线的实轴长为PM-PN=$\sqrt{{4}^{2}+(2+2)^{2}}$-4=4($\sqrt{2}$-1).
故答案为:4($\sqrt{2}$-1).
点评 本题考查抛物线的性质,考查双曲线、抛物线的定义,考查学生分析解决问题的能力,当m取得最大值时,sinα最小,此时直线PM与抛物线相切,是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | p∨(¬q) | C. | (¬p)∧q | D. | (¬p)∧(¬q) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com