分析 分别把极坐标方程化为直角坐标方程,利用直线与圆相切的性质可得切线的斜率,即可得出.
解答 解:点P$({\sqrt{2},\frac{π}{4}})$化为P(1,1),
圆ρ=2cosθ化为ρ2=2ρcosθ,∴x2+y2=2x,化为(x-1)2+y2=1.
设与圆相切的直线的方程为y-1=k(x-1),即kx-y+1-k=0,
则$\frac{|k+1-k|}{\sqrt{1+{k}^{2}}}$=1,解得k=0.
∴切线方程为y=1.
化为极坐标方程为:1=ρsinθ.
故答案为:1=ρsinθ.
点评 本题考查了把极坐标方程化为直角方程、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{2}$+2kπ,$\frac{5π}{2}$+2kπ]k∈Z* | B. | [-$\frac{3π}{4}$+2kπ,$\frac{π}{4}$+2kπ]k∈Z* | ||
| C. | [$\frac{π}{2}$+4kπ,$\frac{5π}{2}$+4kπ]k∈Z* | D. | [-$\frac{3π}{4}$+4kπ,$\frac{π}{4}$+4kπ]k∈Z* |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±2x | B. | y=$±\sqrt{2}x$ | C. | y=$±\frac{1}{2}x$ | D. | y=$±\frac{{\sqrt{2}}}{2}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com