精英家教网 > 高中数学 > 题目详情
17.已知复数z满足(1+2i)z=4+3i,则z的共轭复数是(  )
A.2-iB.2+iC.1+2iD.1-2i

分析 直接由复数代数形式的除法运算化简复数z,则z的共轭复数可求.

解答 解:∵(1+2i)z=4+3i,
∴$z=\frac{4+3i}{1+2i}=\frac{(4+3i)(1-2i)}{(1+2i)(1-2i)}=\frac{10-5i}{5}=2-i$,
则z的共轭复数是2+i.
故选:B.

点评 本题考查了复数代数形式的除法运算,考查了共轭复数的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=$\frac{x}{lnx}$-ax.
(1)若函数f(x)在(1,+∞)上为减函数,求实数a的最小值;
(2)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知某路口最高限速50km/h,电子监控测得连续6辆汽车的速度如图的茎叶图(单位:km/h).若从中任取2辆,则恰好有1辆汽车超速的概率为(  )
A.$\frac{4}{15}$B.$\frac{2}{5}$C.$\frac{8}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知M是x2=8y的对称轴与准线的交点,点N是其焦点,点P在该抛物线上,且满足|PM|=m|PN|,当m取得最大值时,点P恰在以M、N为焦点的双曲线上,则该双曲线的实轴长为4($\sqrt{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设全集U=R,已知A=$\left\{{x\left|{\frac{2x+3}{x-2}>0}\right.}\right\}$,B={x||x-1|<2},则(∁UA)∩B=(  )
A.$({-\frac{3}{2},1})$B.(-1,2]C.(2,3]D.[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,a1=0,a1+a2+a3+…+an+n=an+1,n∈N*
(Ⅰ)求证:数列{an+1}是等比数列;
(Ⅱ)设数列{bn}的前n项和为Tn,b1=1,点(Tn+1,Tn)在直线$\frac{x}{n+1}-\frac{y}{n}=\frac{1}{2}$上,若不等式$\frac{b_1}{{{a_1}+1}}+\frac{b_2}{{{a_2}+1}}+…+\frac{b_n}{{{a_n}+1}}≥m-\frac{9}{{2+2{a_n}}}$对于n∈N*恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C的对边分别为a,b,c,且3sinA=7sinC,cosB=$\frac{11}{14}$.
(1)求角A的大小;
(2)若c=3,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的一个盒子,每个盒内放一个球,若恰好有两个球的编号与盒子编号相同,则不同的投放方法的种数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“m=2”是“直线x-y+m=0与圆x2+y2=2相切”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案