精英家教网 > 高中数学 > 题目详情
7.“m=2”是“直线x-y+m=0与圆x2+y2=2相切”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由圆的方程找出圆心坐标和半径r,根据直线与圆相切,得到圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于m的方程,求出方程的解可得到m的值,即可得出结论.

解答 解:由圆x2+y2=2,得到圆心(0,0),半径r=$\sqrt{2}$,
∵直线x-y+m=0与圆x2+y2=2相切,
∴圆心到直线的距离d=r,即$\frac{|m|}{\sqrt{2}}$=$\sqrt{2}$,
整理得:|m|=2,即m=±2,
∴“m=2”是“直线x-y+m=0与圆x2+y2=2相切”的充分不必要条件,
故选:A.

点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,以及点到直线的距离公式,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知复数z满足(1+2i)z=4+3i,则z的共轭复数是(  )
A.2-iB.2+iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow m=(sin(ωx+\frac{π}{3}),-1),\overrightarrow n=(\sqrt{3},cos(ωx+\frac{π}{3}))(ω>0)$,函数f(x)=$\overrightarrow m•\overrightarrow n$图象的对称中心与对称轴之间的最小距离为$\frac{π}{4}$.
(1)求ω的值,并求函数f(x)在区间[0,π]上的单调递增区间;
(2)△ABC中,角A,B,C的对边分别为a,b,c,f(A)=1,cosC=$\frac{3}{5}$,a=5$\sqrt{3}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:?x∈R,2x>x2;命题q:?x(-2,+∞),使得(x+1)•ex≤1,则下列命题中为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=-${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,则二项式(x2+$\frac{a}{x}$)6的展开式中x3的系数为(  )
A.20B.-20C.160D.-160

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,网格上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该组合体的体积为(  )
A.12π+4+4$\sqrt{3}$B.12π+4$\sqrt{3}$C.4π+8D.4π+$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,曲线$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数,0≤φ<2π)上的两点A、B对应的参数分别为α,α+$\frac{π}{2}$.
(1)求AB中点M的轨迹的普通方程;
(2)求点O到直线AB的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,点A、B的坐标分别为A(a,0),B(b,0),且a,b满足a=$\sqrt{3-b}$+$\sqrt{b-3}$-1,现同时将点A、B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B的对应点C、D,连接AC、BD、CD.
(1)求点C、D的坐标及四边形ABDC的面积S四边形ABDC
(2)在y轴上是否存在一点P,连接PA、PB,使S△PAB=S四边形ABDC,若存在这样一点,求出点P的坐标,若不存在,试说明理由;
(3)点P是线段BD上的一个动点,连接PC、PO,当点P在BD上移动时(不与B、D重合)$\frac{∠DCP+∠CPO}{∠BOP}$的值是否发生变化,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.微信是现代生活进行信息交流的重要工具,对某城市年龄在20岁至60岁的微信用户进行有关调查发现,有$\frac{1}{3}$的用户平均每天使用微信时间不超过1小时,其他人都在1小时以上;若将这些微信用户按年龄分成青年人(20岁至40岁)和中年人(40岁至60岁)两个阶段,那么其中$\frac{3}{4}$是青年人;若规定:平均每天使用微信时间在1小时以上为经常使用微信,经常使用微信的用户中有$\frac{2}{3}$是青年人.
(I)现对该市微信用户进行“经常使用微信与年龄关系”的调查,采用随机抽样的方法选取容  量为l80的一个样本,假设该样本有关数据与调查结果完全相同,列出2×2列联表.
青年人中年人合计
经常使用微信
不经常使用微信
合计
(Ⅱ)由列表中的数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(Ⅲ)从该城市微信用户中任取3人,其中经常使用微信的中年人人数为X,求出X的期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

同步练习册答案