精英家教网 > 高中数学 > 题目详情
15.已知命题p:?x∈R,2x>x2;命题q:?x(-2,+∞),使得(x+1)•ex≤1,则下列命题中为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

分析 先判断命题p,q的真假,再根据真值表进行判断即可.

解答 解:命题p:?x∈R,2x>x2;当x=-1时,2-1<(-1)2,故命题p为假命题,则¬p为真命题,
命题q:?x(-2,+∞),使得(x+1)•ex≤1,当x=-1时,0<1,故命题q为真命题,则¬q为假命题,
故p∧q为假命题,p∨¬q为假命题,¬p∧q为真命题,¬p∧¬q为假命题,
故选:C.

点评 本题借助考查复合命题的真假判断,解题的关键是熟练掌握复合命题的真假规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知M是x2=8y的对称轴与准线的交点,点N是其焦点,点P在该抛物线上,且满足|PM|=m|PN|,当m取得最大值时,点P恰在以M、N为焦点的双曲线上,则该双曲线的实轴长为4($\sqrt{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的一个盒子,每个盒内放一个球,若恰好有两个球的编号与盒子编号相同,则不同的投放方法的种数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义域为R的奇函数y=f(x)的导函数y=f′(x).当x≠0时,f′(x)+$\frac{f(x)}{x}$>0.若a=$\frac{1}{2}$f($\frac{1}{2}$),b=-2f(-2),c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),则a、b、c的大小关系是(  )
A.a<b<CB.b<c<aC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某媒体对“男女同龄退休”这一公众关注的问题进行了民意调査,如表是在某单位得到的数据(人数):
赞同反对合计
102030
20525
合计302555
(Ⅰ)判断是否有99.5%以上的把握认为赞同“男女同龄退休”与性别有关?
(Ⅱ)用分层抽样的方法从赞同“男女同龄退休”的人员中随机抽取6人作进一步调查分析,将这6人作为一个样本,从中任选出2人,求恰有1名男士和1名女士的概率.
下面的临界值表供参考:
 P(K2≥k) 0.10 0.050.025  0.010 0.005 0.001
 k 2.760 3.841 5.024 606357.879  10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC中,角A、B、C所对额定边分别为a,b,c,且b<c;
(Ⅰ)若a=c•cosB,求角C;
(Ⅱ)若cosA=sin(B-C),求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“m=2”是“直线x-y+m=0与圆x2+y2=2相切”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知:P是直线l:3x+4y+13=0的动点,PA是圆C:x2+y2-2x-2y-2=0的一条切线,A是切点,那么△PAC的面积的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,且a1=1,Sn=$\frac{1}{2}$anan+1
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an•2n-1,设An=$\frac{{b}_{3}}{{b}_{1}{b}_{2}}$+$\frac{{b}_{4}}{{b}_{2}{b}_{3}}$+…+$\frac{{b}_{n+2}}{{b}_{n}{b}_{n+1}}$,求An

查看答案和解析>>

同步练习册答案