分析 在△ABC中,由角A,B,C依次成等差数列并结合三角形内角和公式求得B=$\frac{π}{3}$,进而利用三角形的面积公式即可计算得解.
解答 解:在△ABC中,由角A,B,C依次成等差数列,可得A+C=2B,
再由三角形内角和公式求得B=$\frac{π}{3}$.
由于a=2,c=5,
故S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×2×5×\frac{\sqrt{3}}{2}$=$\frac{5\sqrt{3}}{2}$.
故答案为:$\frac{5\sqrt{3}}{2}$.
点评 本题主要考查等差数列的定义和性质,三角形内角和公式、三角形面积公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com