已知椭圆
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
的动直线L交椭圆C于A、B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.
(Ⅰ)![]()
(Ⅱ)T(0,1)
【解析】(Ⅰ)由![]()
因直线
相切,
,∴
,
…… 2分
∵圆
的两焦点与短轴的一个端点的连线构成等腰直角三角
形,∴
…… 4分
故所求椭圆方程为
…… 5分
(Ⅱ)当L与x轴平行时,以AB为直径的圆的方程:![]()
当L与x轴垂直时,以AB为直径的圆的方程:
由![]()
即两圆公共点(0,1)
因此,所求的点T如果存在,只能是(0,1) …… 8分
(ⅰ)当直线L斜率不存在时,以AB为直径的圆过点T(0,1)
(ⅱ)若直线L斜率存在时,可设直线L:![]()
由![]()
记点
、
…… 10分
![]()
∴TA⊥TB,
综合(ⅰ)(ⅱ),以AB为直径的圆恒过点T(0,1). …… 12分
科目:高中数学 来源: 题型:
| 1 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年山东省实验中学综合测试理)(本小题满分13分)已知椭圆
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(1)求椭圆的方程;
(2)过点
的动直线L交椭圆C于A、B两点,试问:在坐标平面上是否存在一
个定点T,使得以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,
请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
的动直线L交椭圆C于A、B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013届福建泉州一中高二第二学期期末考试文科数学试卷(解析版) 题型:解答题
已知椭圆
的两焦点与短轴的一个端点连结成等腰直角三角形,直线
是抛物线
的一条切线。
(1) 求椭圆方程;
(2) 直线
交椭圆
于A、B两点,若点P满足
(O为坐标原点), 判断点P是否在椭圆
上,并说明理由。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省高三下学期二轮复习数学理卷 题型:解答题
(本小题满分12分)
已知椭圆
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
的动直线L交椭圆C于A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com