精英家教网 > 高中数学 > 题目详情
某班50位学生体育成绩的频率分布表如下:
分数 [50,60) [60,70) [70,80) [80,90) [90,100)
频率 0.06 0.12 0.58 X 0.06
(Ⅰ)估计成绩不低于80分的概率;
(Ⅱ)从成绩不低于80分的学生中随机选取3人,该3人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式
专题:概率与统计
分析:(Ⅰ)由题设条件求出x=0.18,由此能估计出成绩不低于80分的概率.
(Ⅱ)由题意知ξ的取值可能为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出ξ的数学期望.
解答: 解:(Ⅰ)由题意得:
0.06+0.12+0.58+x+0.06=1,
∴x=0.18,
∴估计成绩不低于80分的概率为:
0.18+0.06=0.24.
(Ⅱ)由题意知:
成绩在[80,90)之间的学生有50×0.18=9(人),
成绩在[90,100]之间的学生有50×0.06=3(人),
从成绩不低于80分的学生中随机选取3人,
该3人中成绩在90分以上(含90分)的人数ξ的取值可能为0,1,2,3,
P(ξ=0)=
C
3
9
C
3
12
=
21
55

P(ξ=1)=
C
2
9
C
1
3
C
3
12
=
27
55

P(ξ=2)=
C
1
9
C
2
3
C
3
12
=
27
220

P(ξ=3)=
C
3
3
C
3
12
=
1
220

∴ξ的分布列为:
 ξ  0  1 2 3
 P  
21
55
 
27
55
 
27
220
1
220
 
∴ξ的数学期望Eξ=
21
55
+1×
27
55
+2×
27
220
+3×
1
220
=
3
4
点评:本题考查频率分布表的应用,考查离散型随机变量的数学期,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“a=-7”是“直线(3+a)x+4y=5-3a与直线2x+(5+a)y=8互相平行”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:y2=8x与双曲线C2
x2
a2
-
y2
b2
=1
(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(1)求双曲线C2的方程;
(2)以双曲线C2的另一焦点F1为圆心的圆M与直线y=
3
x
相切,圆N:(x-2)2+y2=1.过点P(1,
3
)作互相垂直且分别与圆M、圆N相交的直线l1和l2,设l1被圆M截得的弦长为s,l2被圆N截得的弦长为t,问:
s
t
是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的一个焦点为(0,-
3
),且椭圆经过点(
1
2
3
).开口向上的抛物线C2的焦点到准线的距离为2,C1的中心和C2的顶点均为坐标原点O.
(1)求C1和C2的标准方程;
(2)A、B为抛物线C2上的点,分别过A、B作抛物线C2的切线,两条切线交于点Q,若点Q恰好在其准线上.
    ①直线AB是否过定点?若是,求出定点坐标;若不是,说明理由;
    ②指出点Q与以线段AB为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在圆x2+y2=4上任取一点P,设点P在x轴上的正投影为点D.当点P在圆上运动时,动点M满足
PD
=2
MD
,动点M形成的轨迹为曲线C.
(1)求曲线C的方程;
(2)已知点E(1,0),若A,B是曲线C上的两个动点,且满足EA⊥EB,求
EA
BA
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,离心率为
2
2
,过椭圆上一点P(2,1)作倾斜角互补的两条直线,分别交椭圆于不同两点A、B.
(Ⅰ)求证:直线AB的斜率为一定值;
(Ⅱ)若直线AB与y轴的交点Q满足:3
QA
+
QB
=
0
,求直线AB的方程;
(Ⅲ)若在椭圆上存在关于直线AB对称的两点,求直线AB在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,P是抛物线上异于原点的任意一点,直线PF与抛物线另一交点为点Q,设l是过点P的抛物线的切线,l与直线y=-1和x轴的交点分别为A,B.
(1)求证:AF⊥PQ;
(2)过B作BC⊥PQ于C,若|PC|=|QF|,求|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,P为不等式组
y-3≤0
3x+y-6≥0
x-y-2≤0
所表示的平面区域内一动点,则线段|OP|的最小值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是两个不共线的向量,
a
=3
e1
+4
e2
b
=
e1
-2
e2
.若以
a
b
为基底表示向量
e1
+2
e2
,即
e1
+2
e2
a
b
,则λ+μ=
 

查看答案和解析>>

同步练习册答案