精英家教网 > 高中数学 > 题目详情

【题目】为了了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验将只小鼠随机分成两组,每组只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比根据试验数据分别得到如图所示的直方图:

根据频率分布直方图估计,事件:“乙离子残留在体内的百分比不高于”发生的概率.

1)根据所给的频率分布直方图估计各段频数;

(附:频数分布表)

组实验甲离子残留频数表

组实验乙离子残留频数表

2)请估计甲离子残留百分比的中位数,请估计乙离子残留百分比的平均值.

【答案】1)见解析;(2)甲离子残留百分比的中位数为,乙离子残留百分比的平均值为.

【解析】

1)根据,求出的值,利用频数、频率和总容量的关系求出每组的频数,填入表格即可;

2)由甲离子残留百分比直方图中位数左边矩形面积和为可求出中位数,将每个矩形底边中点值与对应的矩形面积相乘,再将所得结果相加即可得出平均数.

1)事件:“乙离子残留在体内的百分比不高于”发生的概率

因此,频数分布表如下表所示:

组实验甲离子残留频数表

组实验甲离子残留频数表

2)设甲离子残留百分比的中位数为

,解得.

由频率分布直方图可知,乙离子残留百分比的平均值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为.

1)求椭圆的标准方程;

2)已知圆,直线.试证:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

美国华尔街的次贷危机引起的金融风暴席卷全球,低迷的市场造成产品销售越来越难,为此某厂家举行大型的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用万元满足,已知生产该产品还需投入成本万元(不含促销费用),每件产品的销售价格定为.

)将该产品的利润万元表示为促销费用万元的函数(利润=总售价-成本-促销费)

)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了传承经典,促进学生课外阅读,某校从高中年级和初中年级各随机抽取100名学生进行有关对中国四大名著常识了解的竞赛,图1和图2分别是高中年级和初中年级参加竞赛的学生成绩按照分组,得到的频率分布直方图.

1)完成下列的列联表,并回答是否有的把握认为两个学段的学生对四大名著的了解有差异

成绩小于60分的人数

成绩不小于60的人数

合计

初中年级

高中年级

合计

2)规定竞赛成绩不少于70分的为优秀,按分层抽样的方法从高中,初中年级优秀学生中抽取5人进行复赛,在复赛人员中选3人进行面试,记面试人员中来自初中段的为随机变量,求随机变量的分布列与期望.

其中

附表:

010

0.05

span>0.025

0.010

0.001

2.706

3.841

5.024

6635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生人,学校团委为了了解本校学生到上述红色基地硏学旅行的情况,随机调查了名学生,其中到过中共一大会址或井冈山研学旅行的共有人,到过井冈山研学旅行的人,到过中共一大会址并且到过井冈山研学旅行的恰有人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有( )人

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每支2元,云南空运来的百合花每支进价1.6元,本地供应商处百合花每支进价1.8元,微店这10天的订单中百合花的需求量(单位:支)依次为:251,255,231,243,263,241,265,255,244,252.

(Ⅰ)求今年四月前10天订单中百合花需求量的平均数和众数,并完成频率分布直方图;

(Ⅱ)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(Ⅰ)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250支,还是255支百合花,四月后20天百合花销售总利润会更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求证:

(2)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】同学们刚刚结束了史上最长寒假,经高二各班数学老师了解,同学们每天沉迷于学习中不能自拔,每天认真完成作业,作业正确率很高,为同学们点赞!某个周日一位同学正在三河滩锻炼身体,突然接到级部通知回家开网络学生会,从三河滩某处A到对岸公路BC的距离AB2km B处与家C间的距离为4km,从AC,必须先步行到BC上的某一点D,步行速度为5km/h,再乘电动车到C,电动车车速为10km/h,记

1)试将由AC所用的时间t表示为的函数

2)间为多少时,由AC所用的时间t最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201912月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019COVID19),简称“新冠肺炎”.下图是2020115日至124日累计确诊人数随时间变化的散点图.

为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据115日至124日的数据(时间变量t的值依次12,…,10)建立模型.

1)根据散点图判断,哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)

2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;

3)以下是125日至129日累计确诊人数的真实数据,根据(2)的结果回答下列问题:

时间

125

126

127

128

129

累计确诊人数的真实数据

1975

2744

4515

5974

7111

(ⅰ)当125日至127日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?

(ⅱ)2020124日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?

附:对于一组数据(,……,,其回归直线的斜率和截距的最小二乘估计分别为.

参考数据:其中.

5.5

390

19

385

7640

31525

154700

100

150

225

338

507

查看答案和解析>>

同步练习册答案