精英家教网 > 高中数学 > 题目详情
已知一个正方体的所有顶点在一个球面上,若正方体的棱长为,则球的体积为       .

试题分析:由题意知正方体的体对角线长即为外接球的直径,故外接球半径,体积为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,,,.

(1)证明:;
(2)若,,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.

(1)求证:BCAD
(2)试问该四面体的体积是否存在最大值?若存在,求出这个最大值及此时棱长AD的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面

(1)证明:平面.;
(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个三棱柱的侧棱垂直于底面,且所有棱长都为a,则此三棱柱的外接球的表面积为( )
A.πa2B.15πa2C.πa2D.πa2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D -ABC的体积为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个与球心距离为1的平面截球体所得的圆面面积为π,则球的体积为(  )
A.B.C.D.8π

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知ABCD是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABCAD=2AB=6,则该球的表面积为(  )
A.16πB.24πC.32πD.48π

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱A1B1C1ABC中,D,E,F分别是AB,AC,AA1的中点.设三棱锥FADE的体积为V1,三棱柱A1B1C1ABC的体积为V2,则V1∶V2=    

查看答案和解析>>

同步练习册答案