精英家教网 > 高中数学 > 题目详情
如图,在三棱柱A1B1C1ABC中,D,E,F分别是AB,AC,AA1的中点.设三棱锥FADE的体积为V1,三棱柱A1B1C1ABC的体积为V2,则V1∶V2=    
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

四面体ABCD中,已知AB=CD=,AC=BD=,AD=BC=,则四面体ABCD的外接球的表面积为( )
A.25pB.45pC.50pD.100p

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,正方体ABCDA1B1C1D1的棱长为6,则以正方体ABCDA1B1C1D1的中心为顶点,以平面AB1D1截正方体外接球所得的圆为底面的圆锥的全面积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正四棱锥OABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用总长为14.8 m的钢条做一个长方体容器的框架,如果所制作容器的底面的一边比另一边长0.5 m,那么高为________时容器的容积最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一个正方体的所有顶点在一个球面上,若正方体的棱长为,则球的体积为       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个空间几何体的三视图均是边长为的正方形,则以该空间几何体各个面的中心为顶点的多面体的体积为(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一个圆柱内接于球O中,其底面直径和母线都是2,则球O的体积是    .

查看答案和解析>>

同步练习册答案