精英家教网 > 高中数学 > 题目详情
四面体ABCD中,已知AB=CD=,AC=BD=,AD=BC=,则四面体ABCD的外接球的表面积为( )
A.25pB.45pC.50pD.100p
C

试题分析:由题意可采用割补法,考虑到四面体的四个面为全等的三角形,所以可在其每个面补上一个以为三边的三角形作为底面,且以分别长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为的长方体,并且,则有为球的半径),得,所以球的表面积为,故正确答案为C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.

(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论;
(2)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABEF中,,讲DCEF沿CD折起,使得,得到一个几何体,

(1)求证:平面ADF;
(2)求证:AF平面ABCD;
(3)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,,,.

(1)证明:;
(2)若,,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.

(1)当正视方向与向量的方向相同时,画出四棱锥PABCD的正视图(要求标出尺寸,并写出演算过程);
(2)若M为PA的中点,求证:DM∥平面PBC;
(3)求三棱锥DPBC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥的五个顶点在同一球面上,若该正四棱锥的底面边长为2,侧棱长为,则这个球的表面积为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA="PD=AB=2," 若点P,A,B,C,D都在同一球面上,则此球的表面积等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

棱长为4的正方体的八个顶点都在同一个球面上,则此球的表面积为_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱A1B1C1ABC中,D,E,F分别是AB,AC,AA1的中点.设三棱锥FADE的体积为V1,三棱柱A1B1C1ABC的体积为V2,则V1∶V2=    

查看答案和解析>>

同步练习册答案