精英家教网 > 高中数学 > 题目详情
已知双曲线C的两个焦点坐标分别为F1(-2,0),F2(2,0),双曲线C上一点P到F1,F2距离差的绝对值等于2.
(1)求双曲线C的标准方程;
(2)经过点M(2,1)作直线l交双曲线C的右支于A,B两点,且M为AB的中点,求直线l的方程.
(3)已知定点G(1,2),点D是双曲线C右支上的动点,求|DF1|+|DG|的最小值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知条件推导出双曲线C的实半轴长为a=1,焦半距为c=2,焦点在x轴上,由此能求出双曲线C的标准方程.
(2)设A、B的坐标分别为(x1,y1)、(x2,y2),利用点差法能求出AB所在直线l的方程.
(3)由已知,得|DF1|-|DF2|=2,即|DF1|=|DF2|+2,当且仅当G,D,F2三点共线时,|DF1|+|DG|的最小值.由此能求出这个最小值.
解答: (本小题满分14分)
解:(1)依题意,得双曲线C的实半轴长为a=1,焦半距为c=2,(2分)
∴其虚半轴长b=
c2-a2
=
3
,(3分)
又其焦点在x轴上,
∴双曲线C的标准方程为x2-
y2
3
=1
.(4分)
(2)设A、B的坐标分别为(x1,y1)、(x2,y2),
3
x
2
1
-
y
2
1
=3
3
x
2
2
-
y
2
2
=3
(5分)
两式相减,得3(x1-x2)(x1+x2)-(y1-y2)(y1+y2)=0,(6分)
∵M(2,1)为AB的中点,
x1+x2=4
y1+y2=2
,(7分)
∴12(x1-x2)-2(y1-y2)=0,
kAB=
y1-y2
x1-x2
=6
.(8分)
∴AB所在直线l的方程为y-1=6(x-2),即6x-y-11=0.(9分)
(3)由已知,得|DF1|-|DF2|=2,即|DF1|=|DF2|+2,(10分)
∴|DF1|+|DG|=|DF2|+|DG|+2≥|GF2|+2,
当且仅当G,D,F2三点共线时取等号.(11分)
|GF2|=
(1-2)2+22
=
5
,(12分)
|DF2|+|DG|+2≥|GF2|+2=
5
+2
,(13分)
∴|DF1|+|DG|的最小值为
5
+2
.(14分)
点评:本题考查双曲线方程的求法,考查直线方程的求法,考查两线段和的最小值的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l经过坐标原点和点(-1,-1),则直线l的倾斜角是(  )
A、
π
4
B、
4
C、
π
4
4
D、-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(4,0),圆C:x2+y2=4上有一动点P,设M为线段AP上一点,且满足
AM
=2
MP
,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn=
C
0
n
-
C
1
n-1
+
C
2
n-2
-…+
(-1)mC
m
n-m
,m,n∈N*且m<n,其中当n为偶数时,m=
n
2
;当n为奇数时,m=
n-1
2

(1)证明:当n∈N*,n≥2时,Sn+1=Sn-Sn-1
(2)记S=
1
2014
C
0
2014
-
1
2013
C
1
2013
+
1
2012
C
2
2012
-
1
2011
C
3
2011
+…-
1
1007
C
1007
1007
,求S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+1
1-ax
(a>0且a≠0),函数g(x)与f(x)的图象关于y=x对称.
(1)求g(x)的解析式;
(2)判断g(x)在(1,+∞)内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(π-α)-cos(π+α)=
2
4
,求sin(π+α)+cos(3π-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为4,且椭圆Γ过点A(2,
2
).
(1)求椭圆Γ的方程;
(2)设P、Q为椭圆Γ上关于y轴对称的两个不同的动点,求
AP
AQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≥
π
2
,x∈R)的最大值是3,其相邻两条对称轴间的距离为
π
2

(1)求f(x)的表达式;
(2)求函数y=f(x)+
3
sin2x的最大值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x,sinx),
b
=(ex,0),若f(x)=
a
b
,则f(x)在x=1处的切线方程为
 

查看答案和解析>>

同步练习册答案