精英家教网 > 高中数学 > 题目详情
已知向量
a
b
满足
a
+
b
=(0,1),
a
-
b
=(-1,2),则
a
b
=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用向量的坐标运算、数量积运算即可得出.
解答: 解:∵
a
+
b
=(0,1),
a
-
b
=(-1,2),
a
=(-
1
2
3
2
)
b
=(
1
2
,-
1
2
)

a
b
=-
1
4
-
3
4
=-1.
故答案为:-1.
点评:本题考查了向量的坐标运算、数量积运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=2,BC=4,AA1=4,D是棱AA1的中点.
(1)证明:平面BDC1⊥平面BDC;
(2)求三棱锥C1-BCD外接球与三棱柱ABC-A1B1C1外接球的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=kx-10与圆C:x2+y2+mx+2y-4=0交于M、N两点,且M、N关于直线m:x+2y=0对称,
(1)求直线l截圆所得的弦长;
(2)直线n:y=3x-5,过点C的直线与直线l、n分别交于P、Q两点,C恰为PQ的中点,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两地相距skm,汽车从甲地匀速行驶到乙地,速度不得超过ckm/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(单位km/h)的平方成正比,且比例系数为b;固定部分为a元(a<bc2),为了使全程运输成本最小,汽车应该以多大行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,内角A,B,C的对边分别为a,b,c,且cos2B=3cos(A+C)+1.
(1)求B;
(2)若cosA=
4
5
,△abc的面积为
36+9
3
50
,求△ABC的外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,数列{bn}满足bn=
1
n
(lga1+lga2+…+lgan)(n∈N*),记Sn=(b1+b2+…+bn)(n∈N*
(1)若数列{an}的首项a1=10,公比q=100,求数列{bn}的通项公式;
(2)在(1)的条件下,求Sn的最大值;
(3)是否存在实数k,使得
1
lga1lga2
+
1
lga2lga3
+…+
1
lgan-1lgan
=+
n+k
lga1lgan
对于任意的正整数n恒成立?若存在,请求出实数k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上一点,F1,F2分别为C的左右焦点,|F1F2|=2
3
,∠F1MF2=60°,△F1MF2的面积为
3
3

(1)求椭圆C的方程;
(2)设过椭圆右焦点F2的直线l和椭圆交于两点A,B,是否存在直线l,使得△OAF2与△OBF2的面积比值为2?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知如图,四棱锥P-ABCD,它的底面是边长为a的菱形,且∠ABC=120°.又PC⊥平面ABCD,PC=a.E为PA的中点.
(Ⅰ)求证:平面EBD⊥平面ABCD:
(Ⅱ)求三棱锥VP-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点的距离为5,求p与m的值.

查看答案和解析>>

同步练习册答案