精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=-x2+2(m-1)x+3是R上的偶函数,那么实数m=1.

分析 由题意可得函数f(x)满足f(-x)=f(x),由此求得实数m的值.

解答 解:∵函数f(x)=-x2+2(m-1)x+3是R上的偶函数,∴f(-x)=f(x),
∴-x2+2(m-1)x+3=-(-x)2+2(m-1)•(-x)+3,∴2(m-1)=0,∴m=1,
故答案为:1.

点评 本题主要考查函数的奇偶性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图所示的流程图中,输出的S为$\frac{25}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.刘老师是一位经验丰富的高三理科班班主任,经长期研究,他发现高中理科班的学生的数学成绩(总分150分)与理综成绩(物理、化学与生物的综合,总分300分)具有较强的线性相关性,以下是刘老师随机选取的八名学生在高考中的数学得分x与理综得分y(如表):
学生编号12345678
数学分数x52648796105123132141
理综分数y112132177190218239257275
参考数据及公式:$\widehaty=a+bx,b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x\overline y}}{{x_1^2+x_2^2+…+x_n^2-n{{\overline x}^2}}}≈1.83,\overline x=100,\overline y=200$.
(1)求出y关于x的线性回归方程;
(2)若小汪高考数学110分,请你预测他理综得分约为多少分?(精确到整数位);
(3)小金同学的文科一般,语文与英语一起能稳定在215分左右.如果他的目标是在高考总分冲击600分,请你帮他估算他的数学与理综大约分别至少需要拿到多少分?(精确到整数位).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=x2+ax+b(a,b∈R)在区间(0,1]上有零点x0,则$ab(\frac{x_0}{4}+\frac{1}{{9{x_0}}}-\frac{1}{3})$的最大值是$\frac{1}{144}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设复数z=3-2i,则z的虚部是(  )
A.iB.3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-e-x
(Ⅰ)判断函数f(x)的奇偶性和单调性,并说明理由;
(Ⅱ)若f(x2)+f(kx+1)>0对任意x∈R恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=x(2-x)(0<x<2)的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,向量$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{AC}$,P是BN上一点,若向量$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+$\frac{2}{11}$$\overrightarrow{AC}$,则λ=$\frac{5}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,这是一个正八边形的序列,则第n个图形的边数(不包含内部的边)是6n+2.

查看答案和解析>>

同步练习册答案