精英家教网 > 高中数学 > 题目详情

设锐角三角形ABC的内角A,B,C的对边分别为,且.
(1)求角的大小;
(2)若,求的面积及.

(1);(2).

解析试题分析:(1)由正弦定理,有,那么可以将条件转化成角的关系:,得到,再由锐角三角形得到;(2)已知,夹角,可直接利用正弦定理的面积公式,求出面积为;又由余弦定理:,可得:,所以.
试题解析:(1),由正弦定理有
可得.
由于,
故有
又因为是锐角,所以:.
(2)依题意得:.
所以由余弦定理可得:
.

考点:正弦定理,余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△ABC中,a、b、c分别为角A、B、C的对边,若m=(sin2,1),n="(-2,cos" 2A+1),且m⊥n.
(1)求角A的度数;
(2)当a=2,且△ABC的面积S=时,求边c的值和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1 260 m,经测量cos A,cos C.
 
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)求函数的最小正周期;
(2)在中,角A,B,C的对边分别为a,b,c,且满足,若,求角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,设角A,B,C的对边分别为a,b,c,且
(1)求角A的大小;
(2)若,求边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a=3,b=2,∠B=2∠A.
(1)求cosA的值;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C所对的边分别为a,b,c,且f(A)=2cos sin+sin2-cos2.
(1)求函数f(A)的最大值;
(2)若f(A)=0,C=,a=,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC中内角ABC的对边分别为abc,已知abcos Ccsin B.
(1)求B
(2)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a=3,b=2,∠B=2∠A.
(1)求cos A的值;
(2)求c的值.

查看答案和解析>>

同步练习册答案