精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx+c(a≠0)的图象过点A(0,1)和B(-1,0),且b2-4a≤0.
(1)求f(x)的解析式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
考点:二次函数的性质,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)A,B两点的坐标带入函数f(x)便可得到c=1,b=a+1,而将b=a+1带入b2-4a≤0即可求得a=1,b=2,所以便得到f(x)=x2+2x+1;
(2)先求出g(x)=x2+(2-k)x+1,而根据g(x)在[-2,2]上是单调函数,便可得到-
2-k
2
≤-2
,或-
2-k
2
≥2
,解不等式即得k的取值范围.
解答: 解:(1)由题设得:f(0)=c=1,f(-1)=a-b+1=0,b=a+1;
代入b2-4a≤0,得(a+1)2-4a≤0,即(a-1)2≤0,解得a=1,b=2;
所以f(x)=x2+2x+1;
(2)g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1;
因为当x∈[-2,2]时,g(x)=f(x)-kx是单调函数;
所以-
2-k
2
≤-2或-
2-k
2
≥2;
解得,k≤-2,或≥6;
∴实数k的取值范围是(-∞,-2]∪[6,+∞).
点评:考查函数图象上点的坐标和函数解析式的关系,完全平方式,以及二次函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3x+x-3的零点为x1,函数g(x)=log3x+x-3的零点为x2,则x1+x2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知k为实数,对于实数a和b定义运算“*”:a*b=
a2-kab,a≤b
b2-kab,a>b
,设f(x)=(2x-1)*(x-1).
(Ⅰ)若f(x)在[-
1
2
1
2
]上为增函数,求实数k的取值范围;
(Ⅱ)已知k
1
2
,且当x>0时,f(f(x))>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+φ),其中φ为实数,若f(
π
3
)=1,则函数g(x)=2cos(2x+φ)+1的单调递增区间是(  )
A、[kπ-
12
,kπ+
π
12
](k∈Z)
B、[kπ+
π
12
,kπ+
12
](k∈Z)
C、[kπ-
3
,kπ+
π
6
](k∈Z)
D、[kπ-
π
3
,kπ+
π
6
](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin2ω πx(ω>0)的图象在区间[0,
1
2
]上至少有两个最高点和两个最低点,ω的取值范围是?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ,cosθ(θ∈(0,π))是方程x2-ax+a=0的两根,求下列值:
(1)sinθcosθ;   
(2)sinθ-cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-x,x≤0
x2+1,x>0
,则f(f(-1))的值为(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点P(x0,y0)到直线l1:Ax+By+C=0,l2:Ax+By+C′=0(C≠C′)的有向距离分别为δ1=
Ax0+By0+C
A2+B2
,δ2=
Ax0+By0+C′
A2+B2
,则(  )
A、0<
δ1
δ2
<1
B、-1<
δ1
δ2
<0,
δ1
δ2
<0,
δ1
δ2
<0
C、
δ1
δ2
<-1
D、
δ1
δ2
>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x,x≥0
x2x<0
,则f[f(-2)]=(  )
A、8B、-8C、16D、8或-8

查看答案和解析>>

同步练习册答案