(本小题共12分)
设x=3是函数f (x) = (x2+ax+b)·e3-x (x∈R)的一个极值点。
⑴求a与b的关系式,(用a表示b),并求f(x)的单调区间。
⑵设a>0,
,若存在ε1,ε2∈[0,4],使|f (ε1)-g (ε2)|<1成立,求a的取值范围
(1) 当a<-4时,x2>3=x1,则在区间(-∞,3)上,
,f(x)为减函数;
在区间(3,-a-1)上
f (x)为增函数。
在区间(-a-1,+∞)上
f (x)为减函数。
当a>-4时,x2<3=x1,则在区间(-∞,-a-1)上
f(x)为减函数;
在区间(-a-1,3)上,
为增函数;
在区间(3,+∞)上,
f(x)为减函数。
(2) ![]()
【解析】解:⑴
(2分)
![]()
![]()
=![]()
令![]()
由于x=3是极值点,所以3+a+1≠0,那么a≠-4。
当a<-4时,x2>3=x1,则在区间(-∞,3)上,
,f(x)为减函数;
在区间(3,-a-1)上
f (x)为增函数。
在区间(-a-1,+∞)上
f (x)为减函数。
(4分)
当a>-4时,x2<3=x1,则在区间(-∞,-a-1)上
f(x)为减函数;
在区间(-a-1,3)上,
为增函数;
在区间(3,+∞)上,
f(x)为减函数。
(6分)
⑵由①知,当a>0时,f(x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,
那么f(x)在区间[0,4]上的值域是[min (f (0),f (4)),f (3)],
而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f(3)=a+6,
那么f(x)在区间[0,4]上的值域是[-(2a+3)e3,a+6], (8分)
又g (x)=
在区间[0,4]上是增函数,
且它在区间[0,4]上的值域是
(10分)
由于![]()
所以只需
故a的取值范围是
。
(12分
科目:高中数学 来源: 题型:
. (本小题共12分)已知椭圆E:
的焦点坐
标为
(
),点M(
,
)在椭圆E上
(1)求椭圆E的方程;(2)O为坐标原点,⊙
的任意一条切线与椭圆E有两个交点
,
且
,求⊙
的半径。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年内蒙古呼伦贝尔市高三第三次模拟考试文科数学试卷 题型:解答题
(本小题共12分)如图,已知
⊥平面
,
∥
,
是正三角形,
,且
是
的中点
![]()
(1)求证:
∥平面
;
(2)求证:平面BCE⊥平面
.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年内蒙古呼伦贝尔市高三第三次模拟考试文科数学试卷 题型:解答题
(本小题共12分)某中学的高二(1)班男同学有
名,女同学有
名,老师按照分层抽样的方法组建了一个
人的课外兴趣小组.
(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出
名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
查看答案和解析>>
科目:高中数学 来源:2010-2011学年甘肃省天水市高三上学期第一阶段性考试理科数学卷 题型:解答题
(本小题共12分)
如图,在正三棱柱ABC—A1B1C1中,点D是棱AB的中点,BC=1,AA1=![]()
(1)求证:BC1//平面A1DC;
(2)求二面角D—A1C—A的大小
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com