精英家教网 > 高中数学 > 题目详情
已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为(  )
A、12πB、16π
C、36πD、20π
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:由∠BAC=90°,AB=AC=2,得到BC,即为A、B、C三点所在圆的直径,取BC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=
2
,则OA可求.
解答: 解:如图所示:取BC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,
在Rt△OMB中,OM=1,MB=
2

∴OA=
3
,即球的半径为
3

∴球O的表面积为12π.
故选:A.
点评:本题考查球的有关计算问题,点到平面的距离,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[0,1]时,f(x)=x3,则方程f(x)=lg|x|根的个数为(  )
A、12B、16C、18D、20

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD-A1B1C1D1为正方体,下面结论错误的是(  )
A、BD∥平面CB1D1
B、AC1⊥BD
C、AC1⊥平面CB1D1
D、异面直线AC1与CB所成的角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=
1
3
x3+
1
2
x2
+mx+n,直线l与函数f(x),g(x)的图象都相切于点(1,0)
(1)求直线l的方程;
(2)求函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x≥1,命题q:x2≥x,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=xe-x,x∈[0,4]的最小值为(  )
A、0
B、
1
e
C、
4
e4
D、
2
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有对称中心M(x0,f(x0)),记函数f(x) 的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x0)=0.若函数f(x)=x3-3x2,则f(
1
2014
)+f(
2
2014
)+f(
3
2014
)+…+f(
4017
2014
)=(  )
A、4027B、-4027
C、8034D、-8034

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=lnx,g(x)=f(x)+f′(x).
(1)求g(x)的单调区间和最小值;
(2)讨论g(x)与g(
1
x
)的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题“?x∈R,有x2-mx-m<0”是假命题,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案