精英家教网 > 高中数学 > 题目详情
19.设a∈R,函数f(x)=x3-3ax2+a.
(1)若x=-1是函数f(x)的极值点,求实数a的值;
(2)是否存在实数a,使得x∈[1-a,1+a]时,恒有-1≤f′(x)≤1成立(f′(x)是函数f(x)的导函数)?若存在,求出a的取值范围;若不存在,请说明理由.

分析 (1)求出函数的导数,得到f′(-1)=0,求出a的值即可;
(2)通过讨论a的范围,结合二次函数的性质求出函数的最大值和最小值,得到关于a的不等式组,解出即可.

解答 解:(1)f′(x)=3x2-6ax,
f′(-1)=3+6a=0,解得:a=-$\frac{1}{2}$;
(2)f′(x)=3x2-6ax,对称轴x=a,
①a≤1-a即a≤$\frac{1}{2}$时,
f′(x)在[1-a,1+a]递增,
∴f′(x)min=f′(1-a)=9a2-12a-3,
f′(x)max=f′(1+a)=-3a2+3,
∵-1≤f′(x)≤1,
∴$\left\{\begin{array}{l}{a≤\frac{1}{2}}\\{{9a}^{2}-12a-3≥-1}\\{-{3a}^{2}+3≤1}\end{array}\right.$,解得:a≤-$\frac{\sqrt{6}}{3}$,
②$\frac{1}{2}$<a≤1时,f′(x)在[1-a,a)递减,在(a,1+a]递增,
而a-1+a<1+a-a,
∴f′(x)min=f′(a)=-3a2,f′(x)max=-3a2+2,
∴$\left\{\begin{array}{l}{\frac{1}{2}<a≤1}\\{-{3a}^{2}≥-1}\\{-{3a}^{2}+2≤1}\end{array}\right.$,解得:a=$\frac{\sqrt{3}}{3}$,
③a>1时,a-1+a>1+a-a,
∴f′(x)min=f′(a)=-3a2,f′(x)max=f′(1-a)=9a2-12a-3,
∴$\left\{\begin{array}{l}{a>1}\\{-{3a}^{2}≥-1}\\{{9a}^{2}-12a-3≤1}\end{array}\right.$,无解,
而1-a<1+a,故a≥0,
综上:a=$\frac{\sqrt{3}}{3}$.

点评 本题考查了函数的极值问题,考查导数的应用以及二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知a=$\frac{1}{π}\int_{-2}^2$($\sqrt{4-{x^2}}$-ex)dx,若(1-ax)2016=b0+b1x+b2x2+…+b2016x2016(x∈R),则$\frac{b_1}{2}$+$\frac{b_2}{2^2}$+…+$\frac{{{b_{2016}}}}{{{2^{2016}}}}$的值为(  )
A.0B.-1C.1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)在(a,b)内可导,则f′(x)<0是f(x)在(a,b)内单调递减的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知m∈R.若函数f(x)=x3-3(m+1)x2+12mx+1在[0,3]上无极值点,则m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2x3+ax2+6在x=1时取得极值.
(1)求a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知x∈(1,+∞),函数f(x)=ex+2ax(a∈R),函数g(x)=|$\frac{e}{x}$-lnx|+lnx,其中e为自然对数的底数.
(1)若a=-$\frac{{e}^{2}}{2}$,求函数f(x)的单调区间;
(2)证明:当a∈(2,+∞)时,f′(x-1)>g(x)+a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知tanα=2,求下列各式的值:
(1)$\frac{sinα+cosα}{sinα-cosα}$
(2)3sin2α-5sinαcosα+3cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=x3-ax在(-∞,+∞) 是增函数,则a的取值范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且Sn+2=2an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2log2an,数列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n项和为Tn,证明:Tn<$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案