精英家教网 > 高中数学 > 题目详情
已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-2+y2=相切于点Q,且=2,则椭圆C的离心率等于(  )
A.B.C.D.
A
记椭圆的左焦点为F′,

圆(x-)2+y2=的圆心为E,
连接PF′、QE.
∵|EF|=|OF|-|OE|=c-=,=2,
==,
∴PF′∥QE,
=,且PF′⊥PF.
又∵|QE|=(圆的半径长),
∴|PF′|=b.
据椭圆的定义知:|PF′|+|PF|=2a,
∴|PF|=2a-b.
∵PF′⊥PF,
∴|PF′|2+|PF|2=|F′F|2,
∴b2+(2a-b)2=(2c)2,
∴2(a2-c2)+b2=2ab,
∴3b2=2ab,
∴b=,c==a,=,
∴椭圆的离心率为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知常数,向量,经过定点为方向向量的直线与经过定点为方向向量的直线相交于,其中
(1)求点的轨迹的方程;(2)若,过的直线交曲线两点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,右焦点到直线的距离为
(1)求椭圆的方程;
(2)过椭圆右焦点F2斜率为)的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.圆的方程是
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;
(3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆,直线的方程为,过右焦点的直线与椭圆交于异于左顶点两点,直线交直线分别于点
(1)当时,求此时直线的方程;
(2)试问两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线与直线相交于A、B两点,其中A点的坐标是(1,2)。如果抛物线的焦点为F,那么等于(    )
A. 5         B.6            C.     D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的离心率e=,一条准线方程为x=
(1)求椭圆C的方程;
(2)设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.
①当直线OG的倾斜角为60°时,求△GOH的面积;
②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下几个命题中:其中真命题的序号为_________________(写出所有真命题的序号)
①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若则动点P的轨迹为椭圆;
③双曲线有相同的焦点;
④在平面内,到定点的距离与到定直线的距离相等的点的轨迹是抛物线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

同步练习册答案