精英家教网 > 高中数学 > 题目详情
已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.圆的方程是
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;
(3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:
(1) ;(2);(3)证明见解析.

试题分析:(1)从双曲线方程中发现只有一个参数,因此我们只要找一个关系式就可求解,而这个关系式在中,,通过直角三角形的关系就可求得;(2)由(1)知双曲线的渐近线为,这两条渐近线在含双曲线那部分的夹角为钝角,因此过双曲线上的点作该双曲线两条渐近线的垂线为锐角,这样这题我们只要认真计算,设点坐标为,由点到直线距离公式求出距离,利用两条直线夹角公式求出,从而得到向量的数量积;(3)首先 等价于,因此设,我们只要证,而可以由切线的方程与双曲线方程联立方程组得到,再借助切线方程得到,验证下是否有,注意上述情形是在时进行的,而时,切线为,直接验证即可.
试题解析:(1)设的坐标分别为
因为点在双曲线上,所以,即,所以 
中,,所以           2分
由双曲线的定义可知:
故双曲线的方程为:                                     4分
(2)由条件可知:两条渐近线分别为        5分
设双曲线上的点,设两渐近线的夹角为,则
则点到两条渐近线的距离分别为   7分
因为在双曲线上,所以

所以        10分
(3)由题意,即证:
,切线的方程为:                   11分
①当时,切线的方程代入双曲线中,化简得:

所以:
  13分
所以            15分
②当时,易知上述结论也成立. 所以        16分
综上,,所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM的直线ly轴上的截距为m,直线l与椭圆相交于AB两个不同点.

(1)求实数m的取值范围;
(2)证明:直线MAMBx轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,点是双曲线右支上相异两点,且满足为线段的中点,直线的斜率为
(1)求双曲线的方程;
(2)用表示点的坐标;
(3)若的中垂线交轴于点,直线轴于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(2)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合), 试问:直线轴的交点是否是定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆两点,直线与直线交于点.
(1)求椭圆的方程;
(2)求证:三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点,点在直线上运动,过点垂直的直线和线段的垂直平分线相交于点
(1)求动点的轨迹的方程;
(2)过(1)中的轨迹上的定点作两条直线分别与轨迹相交于两点.试探究:当直线的斜率存在且倾斜角互补时,直线的斜率是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-2+y2=相切于点Q,且=2,则椭圆C的离心率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,F1,F2是椭圆C1+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形, 则C2的离心率是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1=1,椭圆C2C1的短轴为长轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设直线l与椭圆C2相交于不同的两点AB,已知A点的坐标为(-2,0),点Q(0,y0)在线段AB的垂直平分线上,且=4,求直线l的方程.

查看答案和解析>>

同步练习册答案