精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,连接椭圆的四个顶点得到的菱形的面积为2
2

(1)求椭圆C的方程;
(2)若过点(2,0)的直线l的与椭圆C交于A、B两点,O为坐标原点,当∠AOB为锐角时,求直线l的斜率k的取值范围.
分析:(1)由离心率为
2
2
及a2=b2+c2可得a,b关系,由菱形面积得
1
2
×2a×2b=2
2
,联立方程组即可求得a,b;
(2)设l:y=k(x-2),A(x1,y1),B(x2,y2),由∠AOB为锐角,得
OA
OB
>0
,即x1x2+y1y2=k2[x1x2-2(x1+x2)+4]>0,联立直线方程与椭圆方程消去y得x的二次方程,则△>0,由韦达定理可把上式变为k的不等式,联立可得关于k的不等式组,解出即可;
解答:解:(1)由e=
c
a
=
2
2
得a2=2c2=2b2
依题意
1
2
×2a×2b=2
2
,即ab=
2
,解方程组
a2=2b2
ab=
2
得a=
2
,b=1,
所以椭圆C的方程为
x2
2
+y2=1

(2)设l:y=k(x-2),A(x1,y1),B(x2,y2),
y=k(x-2)
x2
2
+y2=1
,得(1+2k2)x2-8k2x+8k2-2=0,
由△=64k4-4(2k2+1)(8k2-2)>0,得k2
1
2
,且x1+x2=
8k2
1+2k2
x1x2=
8k2-2
1+2k2

于是y1y2=k2(x1-2)(x2-2)=k2[x1x2-2(x1+x2)+4]=
2k2
1+2k2

∵∠AOB为锐角,∴
OA
OB
>0

x1x2+y1y2=
8k2-2
1+2k2
+
2k2
1+2k2
=
10k2-2
1+2k2
>0,解得k2
1
5

k2
1
2
,∴
1
5
k2
1
2
,解得-
2
2
<k<-
5
5
5
5
<k<
2
2

所以直线l的斜率k的取值范围是(-
2
2
,-
5
5
)∪(
5
5
2
2
).
点评:本题考查直线与圆锥曲线的位置关系、椭圆方程的求解,判别式、韦达定理、弦长公式是解决该类题目的基础,解决该类问题常运用方程思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案