精英家教网 > 高中数学 > 题目详情
设数列{an}(n∈N*)满足an+2=2an+1-an,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是(  )
分析:利用an+2=2an+1-an,说明数列是等差数列,通过n≥2时,an=sn-sn-1,结合题意易推出a6>0,a7=0,a8<0,然后逐一分析各选项,排除错误答案.
解答:解:因为an+2=2an+1-an所以数列是等差数列,
由S5<S6得a1+a2+a3+…+a5<a1+a2+…+a5+a6,即a6>0,
又∵S6=S7
∴a1+a2+…+a6=a1+a2+…+a6+a7
∴a7=0,故B正确;
同理由S7>S8,得a8<0,
∵d=an+1-an=a7-a6<0,故A正确;
而C选项S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由结论a7=0,a8<0,显然C选项是错误的.
∵S5<S6,S6=S7>S8,∴S6与S7均为Sn的最大值,故D正确;
故选C.
点评:本题考查了等差数列的前n项和公式和sn的最值问题,熟练应用公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an} 前n项和Sn=
n(an+1)2
,n∈N*且a2=a

(1)求数列{an} 的通项公式an
(2)若a=3,Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,求T100的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3,g (x)=x+
x

(Ⅰ)求函数h (x)=f(x)-g (x)的零点个数.并说明理由;
(Ⅱ)设数列{ an}(n∈N*)满足a1=a(a>0),f(an+1)=g(an),证明:存在常数M,使得对于任意的n∈N*,都有an≤M.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和Sn,且Sn=2an-2,n∈N+
(Ⅰ)试求数列{an}的通项公式;
(Ⅱ)设cn=
nan
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和为Sn,首项为x(x∈R),满足Sn=nan-
n(n-1)2
,n∈N+
(1)求证:数列{an}为等差数列;
(2)求证:若数列{an}中存在三项构成等比数列,则x为有理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和Sn=Aqn+B,则A+B=0是使{an}成为公比不等于1的等比数列的(  )

查看答案和解析>>

同步练习册答案