【题目】某市房管局为了了解该市市民
年
月至
年
月期间买二手房情况,首先随机抽样其中
名购房者,并对其购房面积
(单位:平方米,
)进行了一次调查统计,制成了如图
所示的频率分布直方图,接着调查了该市
年
月至
年
月期间当月在售二手房均价
(单位:万元/平方米),制成了如图
所示的散点图(图中月份代码
分别对应
年
月至
年
月).
![]()
(1)试估计该市市民的购房面积的中位数
;
(2)现采用分层抽样的方法从购房面积位于
的
位市民中随机抽取
人,再从这
人中随机抽取
人,求这
人的购房面积恰好有一人在
的概率;
(3)根据散点图选择
和
两个模型进行拟合,经过数据处理得到两个回归方程,分别为
和
,并得到一些统计量的值如下表所示:
|
| |
| 0.000591 | 0.000164 |
| 0.006050 | |
请利用相关指数
判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出
年
月份的二手房购房均价(精确到
)
(参考数据)
,
,
,
,
,
,![]()
(参考公式)![]()
【答案】(1)
; (2)
(3) 模型
的拟合效果更好;
万元/平方米
【解析】
(1)先由频率分布直方图,求出前三组频率和与前四组频率和,确定中位数出现在第四组,根据中位数两侧的频率之和均为
,即可得出结果;
(2)设从位于
的市民中抽取
人,从位于
的市民中抽取
人,根据分层抽样,求出
,
;由列举法确定从
人中随机抽取
人所包含的基本事件个数,以及满足条件的基本事件个数,进而可求出概率;
(3)根据题中数据,分别求出两种模型对应的相关指数,比较大小,即可确定拟合效果;再由确定的模型求出预测值即可.
(1)由频率分布直方图,可得,前三组频率和为
,
前四组频率和为
,
故中位数出现在第四组,且
.
(2)设从位于
的市民中抽取
人,从位于
的市民中抽取
人,
由分层抽样可知:
,则
,![]()
在抽取的
人中,记
名位于
的市民为
,
,
,位于
的市民为
则所有抽样情况为:
,
,
,
,
,
共6种.
而其中恰有一人在口
的情况共有
种,故所求概率![]()
(3)设模型
和
的相关指数分别为
,
,
则
,
显然![]()
故模型
的拟合效果更好.
由
年
月份对应的代码为
,
则
万元/平方米
科目:高中数学 来源: 题型:
【题目】点
是曲线
:
上的一个动点,曲线
在点
处的切线与
轴、
轴分别交于
,
两点,点
是坐标原点,①
;②
的面积为定值;③曲线
上存在两点
,
使得
是等边三角形;④曲线
上存在两点
,
使得
是等腰直角三角形,其中真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为了解高二学生每天自主学习中国古典文学的时间,随机抽取了高二男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如下表:
古文迷 | 非古文迷 | 合计 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
参考公式:
,其中![]()
参考数据:
| 0.500 | 0.400 | 0.250 | 0.050 | 0.025 | 0.010 |
| 0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
(1)根据上表数据判断能否有60%的把握认为“古文迷”与性别有关?
(2)现从调查的女生中按分层抽样的方法抽出5人进行理科学习时间的调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,的焦点为
,过点
的直线
的斜率为
,与抛物线
交于
,
两点,抛物线在点
,
处的切线分别为
,
,两条切线的交点为
.
(1)证明:
;
(2)若
的外接圆
与抛物线
有四个不同的交点,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在
上的函数
,若函数
满足:①在区间
上单调递减;②存在常数
,使其值域为
,则称函数
为
的“渐近函数”.
(1)设
,若
在
上有解,求实数
取值范围;
(2)证明:函数
是函数
,
的渐近函数,并求此时实数
的值;
(3)若函数
,
,
,证明:当
时,
不是
的渐近函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极点与坐标原点
重合,极轴与
轴非负半轴重合,
是曲线
上任一点
满足
,设点
的轨迹为
.
(1)求曲线
的平面直角坐标方程;
(2)将曲线
向右平移
个单位后得到曲线
,设曲线
与直线
(
为参数)相交于
、
两点,记点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xex-alnx(无理数e=2.718…).
(1)若f(x)在(0,1)单调递减,求实数a的取值范围;
(2)当a=-1时,设g(x)=x(f(x)-xex)-x3+x2-b,若函数g(x)存在零点,求实数b的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西﹣﹣布尼亚科夫斯基﹣﹣施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材4﹣5中给出了二维形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc(即
)时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数
的最大值及取得最大值时x的值分别为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com