精英家教网 > 高中数学 > 题目详情
11.已知数列满足:a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),若bn+1=(n-λ)($\frac{1}{{a}_{n}}$+1),b1=-6,且递增数列,则实数λ的取值范围为λ<3.

分析 a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),两边取倒数可得:$\frac{1}{{a}_{n+1}}$+1=$2(\frac{1}{{a}_{n}}+1)$,利用等比数列的通项公式可得$\frac{1}{{a}_{n}}$.又bn+1=(n-λ)($\frac{1}{{a}_{n}}$+1)=(n-λ)•2n,又b1=-6,且递增数列,可得b2=(2-λ)•2>b1=-6,n≥2时,bn+1>bn.解出即可得出.

解答 解:∵a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),
两边取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$+1,变形为$\frac{1}{{a}_{n+1}}$+1=$2(\frac{1}{{a}_{n}}+1)$,
∴数列$\{\frac{1}{{a}_{n}}+1\}$是等比数列,首项为2,公比为2,
∴$\frac{1}{{a}_{n}}$+1=2n
∴bn+1=(n-λ)($\frac{1}{{a}_{n}}$+1)=(n-λ)•2n
又b1=-6,且递增数列,
∴b2=(2-λ)•2>b1=-6,n≥2时,bn+1>bn
化为$\left\{\begin{array}{l}{λ<5}\\{λ<3}\end{array}\right.$,解得λ<3.
∴实数λ的取值范围为λ<3.
故答案为:λ<3.

点评 本题考查了递推关系的应用、等比数列的通项公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.画出下面的程序所描述的一个程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于实数x,若n≤x<n+1,规定[x]=n,(n∈Z),则不等式4[x]2-20[x]+21<0的解集是[2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数a,b满足a≥b>0,则($\frac{1+3a}{1+a}$)2+($\frac{4+b}{1+b}$)2的最小值为$\frac{121}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式$\sqrt{-{x}^{2}-4x-3}$≤x+2-m,对[-3,-1]恒成立,则实数m的取值范围是m$≤-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}的首项a1=1,且an+1=2an+1,则这个数列的第五项为(  )
A.31B.15C.11D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,求球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{{x}^{2}+4x+4}{x+1}$(x>-1)的最小值为m.
(I)求m的值;
(Ⅱ)当a≤1时,解关于x的不等式(a+1)x2-(3a+1)x+2a-$\frac{m}{2}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数g(x)=x+1,x∈[0,2],f(x)=x2+mx+2.
(1)若方程f(x)=-$\frac{1}{2}$m有两个实根x1,x2,求x12+x22的取值范围;
(2)若函数F(x)=f(x)-g(x)有两个零点,求m的取值范围.

查看答案和解析>>

同步练习册答案