精英家教网 > 高中数学 > 题目详情
19.已知实数a,b满足a≥b>0,则($\frac{1+3a}{1+a}$)2+($\frac{4+b}{1+b}$)2的最小值为$\frac{121}{13}$.

分析 换元法和不等式的性质可得(3-$\frac{2}{1+a}$)2≥(3-$\frac{2}{1+b}$)2,代入已知式子可得$\frac{1}{1+b}$的二次函数形式,由二次函数的知识可得.

解答 解:令t=$\frac{1+3a}{1+a}$=$\frac{3(1+a)-2}{1+a}$=3-$\frac{2}{1+a}$,
∵a≥b>0,∴t=3-$\frac{2}{1+a}$在[b,+∞)上单调递增,
∴当a=b时,t取最小值3-$\frac{2}{1+b}$,即t≥3-$\frac{2}{1+b}$,
∴(3-$\frac{2}{1+a}$)2≥(3-$\frac{2}{1+b}$)2
∴($\frac{1+3a}{1+a}$)2+($\frac{4+b}{1+b}$)2≥(3-$\frac{2}{1+b}$)2+($\frac{4+b}{1+b}$)2=(3-$\frac{2}{1+b}$)2+(1+$\frac{3}{1+b}$)2
令y=(3-$\frac{2}{1+b}$)2+(1+$\frac{3}{1+b}$)2=$\frac{13}{(1+b)^{2}}$-$\frac{6}{1+b}$+10=13($\frac{1}{1+b}$-$\frac{3}{13}$)2-13×$\frac{9}{1{3}^{2}}$+10
由二次函数的知识可得y≥$\frac{121}{13}$,即已知式子的最小值为$\frac{121}{13}$
故答案为:$\frac{121}{13}$.

点评 本题考查函数的最值,换元法和分离常数是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知点A(1,-2),B(4,0),P(a,1),N(a+1,1),当四边形PABN的周长最小时,则a的值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$\sqrt{{{cos}^2}{660°}$的值等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合A={1,2}的非空真子集个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.化简求值:
(1)$\sqrt{\frac{25}{16}}+{(\frac{64}{27})^{-\frac{1}{3}}}-{e^0}$;          
(2)$(lg8+lg1000)lg5+{(lg{2^{\sqrt{3}}})^2}-{3^{{l}o{g_3}2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.记x=log34•log56•log78,y=log45•log67•log89,则(  )
A.x$<y<\sqrt{2}$B.$\sqrt{2}$<x<yC.y$<\sqrt{2}$<xD.$\sqrt{2}$<y<x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列满足:a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),若bn+1=(n-λ)($\frac{1}{{a}_{n}}$+1),b1=-6,且递增数列,则实数λ的取值范围为λ<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={-2,0,1,3},在平面直角坐标系中,点M(x,y)的坐标x∈A,y∈A
(1)求点M在x轴上的概率;
(2)求点M满足y2<4x的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{a{x}^{2}+x+a}{{e}^{x}}$,若当x∈[0,2]时,f(x)≥$\frac{1}{{e}^{2}}$恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案