|
a+b-3 |
a-1 |
科目:高中数学 来源: 题型:
2 |
2 |
AM |
MB |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
4 | 3 |
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江苏省盐城市高三年级第三次调研考试数学试卷 题型:解答题
在平面直角坐标系xoy中,已知定点A(-4,0),B(4,0),动点P与A、B连线低斜率之积为。
(1)求点P的轨迹方程;
(2)设点P的轨迹与y轴负半轴交于点C,半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得弦长为。
(Ⅰ)求圆M的方程;
(Ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如
果不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2013届广东省高二第一学期期末考试文科数学 题型:解答题
(本小题满分14分)
在平面直角坐标系中,N为圆C:上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且.
(Ⅰ)求动点P表示的曲线E的方程;
(Ⅱ)若曲线E与x轴的交点为,当动点P与A,B不重合时,设直线与的斜率分别为,证明:为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:
记函数f(x)的定义域为D,若存在,使成立,则称为坐标的点为函数f(x)图象上的不动点.
(1)若函数图象上有两个关于原点对称的不动点,求a,b应满足的条件;
(2)在(1)的条件下,若a=8,记函数f(x) 图象上有两个不动点分别为A1,A2,P为函数f(x)图象上的另一点,其纵坐标>3,求点P到直线A1A2距离的最小值及取得最小值时的坐标;
(3)下述命题:“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,给予证明;若不正确,请举一反例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com