精英家教网 > 高中数学 > 题目详情
若函数f(x)对定义域R内的任意x都有f(x)=f(2-x),且当x≠1时其导函数f′(x) 满足xf′(x)>f′(x),若1<a<2,则(  )
A、f(2a)<f(2)<f(log2a)B、f(log2a)<f(2)<f(2aC、f(2)<f(log2a)<f(2aD、f(log2a)<f(2a)<f(2)
分析:由f(x)=f(2-x),可知函数f(x)关于直线x=1对称,由xf′(x)>f′(x),可知f(x)在(-∞,1)与(1,+∞)上的单调性,从而可得答案.
解答:解:∵函数f(x)对定义域R内的任意x都有f(x)=f(2-x),
故函数f(x)的图象关于直线x=1对称.
再根据xf′(x)>f′(x),可得 f′(x)(x-1)>0,
当x>1时,f′(x)>0,f(x)在(1,+∞)上的单调递增;
同理可得,当x<2时,f(x)在(-∞,1)单调递减;
∵1<a<2,
∴0<log2a<1,2<2a<4,
∴f(log2a)<f(2)<f(2a),
故选:B.
点评:本题考查抽象函数及其应用,考查导数的性质,判断f(x)在(-∞,1)与(1,+∞)上的单调性是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足f(xy)=f(x)+f(y),则不等式f(x+6)+f(x)≤2f(4)的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0,满足f(
x
y
)=f(x)-f(y)
,则不等式f(x+6)-f(
1
x
)<2f(4)
的解为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=log4(4x+1)+ax(a∈R)
(Ⅰ)若函数f(x)是定义在R上的偶函数,求a的值;
(Ⅱ)若不等式f(x)+f(-x)≥mt+m对任意x∈R,t∈[-2,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年宁夏高三第一次月考文科数学试卷 题型:填空题

下列说法:

①函数y=图象的对称中心是(1,1)

 

②“x>2是x2-3x+2>0”的充分不必要条件

③对任意两实数m,n,定义定点“*”如下:m*n=,则函数f(x)=

 

的值域为(-∞,0]

④若函数f(x)=对任意的x1≠x2都有,则实数a的

 

取值范围是(-]

 

其中正确命题的序号为___________.

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若函数f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0,满足数学公式,则不等式数学公式的解为


  1. A.
    (-8,2)
  2. B.
    (2,8)
  3. C.
    (0,2)
  4. D.
    (0,8)

查看答案和解析>>

同步练习册答案